• Title/Summary/Keyword: EFDC+

Search Result 180, Processing Time 0.037 seconds

A study on water cycle through the establishment of an integrated watershed and river water quality model (유역 및 하천수질 통합모형 구축을 통한 물순환에 관한 연구)

  • Park Byeong-Woo;Seo Yong-Jae;Hur Young-Teck;Kwon Soon-Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.462-462
    • /
    • 2023
  • 최근 낙동강 하구는 35년만에 기수 생태 복원을 본격화하는 다양한 노력과 연구가 진행되고 있다. 또한, 하구에 접해 있는 낙동강 1지류인 서낙동강 수질개선을 위한 물순환 연구도 진행되고 있다. 하지만 하구에 다양한 물관리기관이 혼재하여 유기적인 물관리가 미흡하고, 이해관계자(농민, 어민, 시민단체, 지자체 등)간에 이견도 다양하다. 서낙동강의 "수량-수질-생태" 관리의 효율성을 확보하기 위한 다양한 물관리기관의 물정보 통합관리가 필요하며, 시스템과 수치모형을 구성하여 예측 분석후 수질 및 수질특성을 실측기반을 통해 검보정으로 모형의 정확성을 높이고, 지속적인 유역내 수리적 흐름과 수질개선할 필요가 있다. 본 연구는 서낙동강유역 소유역(33개)로 강우-유출 HSPF 모형으로 유량과 오염부하량을 소유역 15개의 하천에 수리·수질 EFDC 모형 입력자료로 반영되어 계산된다. 모형의 검증을 위해 본류 대저수문 15km 지점(서낙동강 유입부)에 수문개방을 통해 서낙동강 농업용수와 수질개선 유량공급시에 ADCP를 활용하여 대저수문을 포함하여 4개소에 유속과 측정 유량을 산정하여 모형 검보정에 활용하였다. 본 연구결과는 복잡한 하천구성(서낙동강, 평강천, 맥도강, 조만강, 지류하천 등) 및 수리구조물 운영과 수리-수질(염분 포함) 분석 필요성 등을 고려하여 기 구축된 낙동강 하구 통합물관리시스템 수문데이터와 연동되어 향후 서낙동강 물순환 연구에 활용이 될 것으로 기대가 된다.

  • PDF

Impact assessment of drainage gate operations on water resources in an estuarine reservoir (담수호의 배수갑문 운영에 따른 수자원 영향 분석)

  • Kim, Sinae;Kim, Seokhyeon;Lee, Hyunji;Kwak, Jihye;Jun, Sang-Min;Kang, Moon-Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.165-165
    • /
    • 2022
  • 담수호는 하구에 방조제를 축조하여 인위적으로 조성된 저수지로, 배수갑문을 통해 적정수위를 유지하면서 이수 목적의 수자원으로 재활용할 경우 경제적이며 효율적인 수자원이 될 수 있다. 한편, 담수호는 유역의 최하류에 위치하므로 담수호의 통합적 수자원 관리를 위해서는 상류 유역 특성과 유입 오염물질 및 수체 특성에 대한 종합적인 이해를 바탕으로 수문, 수질, 염도 등 다양한수자원 요소를 고려하여 적절한 관리방안을 수립할 필요가 있다. 따라서 본 연구에서는 유역모형 및 호소모형을 연계하여 담수호의 내외 수위차를 고려한 배수갑문 운영 시나리오에 따른 호내 수문 및 수질 측면에서의 영향을 정량적으로 분석하였다. 충청남도 서산시에 위치한 간월호를 대상으로 HSPF (Hydrological Simulation Program-FORTRAN) 모형을 적용하여 상류유역의 장기유출량 및 수질 모의를 수행하여 호내 유입량 자료로 활용하였다. 호소 내 수리-수질 모의를 위해 3차원 수리해석 모형인 EFDC (Environmental Fluid Dynamics Code)와 호소수질모의 모형인 WASP (Water Quality Analysis Simulation Program)을 연계하여 배수갑문 운영에 따른 호내 수문 및 수질 변화를 모의하였다. 본 연구의 결과는 향후 수문 및 수질 영향을 고려한 담수호의 최적 수자원 관리방안 수립하는데 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

Identification of pollutant sources and evaluation of water quality improvement alternatives of the Geum river

  • shiferaw, Natnael;Kim, Jaeyoung;Seo, Dongil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.475-475
    • /
    • 2022
  • The aim of this study is to identify the significant pollutant sources from the tributaries that are affecting the water quality of the study site, the Geum River and provide a solution to enhance the water quality. Multivariate statistical analysis modles such as cluster analysis, Principal component analysis (PCA) and positive matrix factorization (PMF) were applied to identify and prioritize the major pollutant sources of the two major tributaries, Gab-cheon and Miho-cheon, of the Geum River. PCA identifies three major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plant (WWTP), urban, and agricultural pollutions are identified as major pollutant sources. For Miho-cheon, agricultural, urban, and forest land are identified as major pollutant sources. On the contrary, PMF identifies three pollutant sources in Gab-cheon, same as PCA result and two pollutant sources in Miho-cheon. Water quality control scenarios are formulated and improvement of water quality in the river locations are simulated and analyzed with the Environmental Fluid Dynamic Code (EFDC) model. Scenario results were evaluated using a water quality index developed by Canadian Council of Ministers of the Environment. PCA and PMF appears to be effective to identify water pollution sources for the Geum river and also its tributaries in detail and thus can be used for the development of water quality improvement alternative of the above water bodies.

  • PDF

Transportation Modeling of Conservative Pollutant in a River with Weirs - The Nakdong River Case (수중보를 고려한 하천에서 보존성 오염물질의 이송특성 분석 - 낙동강을 중심으로)

  • Lee, Jungwoo;Bae, Sunim;Lee, Dong-Ryul;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.821-827
    • /
    • 2014
  • The 4major river project has caused changes in flow and water quality patterns in major rivers in Korea including the Nakdong River where several toxicant release accidents have had occurred. Three dimensional hydrodynamic model, the Environmental Fluid Dynamics Code (EFDC), was applied to evaluate the effect of geomorphological change of the river on the advection and dispersion patterns of a conservative toxic pollutant. A hypothetical scenario was developed using historical data by assuming a toxic release from an upstream location. If there is a toxic release at the Gumi Industrial Complex, the toxic material would be detected after 2.22 and 9.83 days at Chilgok and Gangjung weir, respectively, in the new river system. It was estimated that they took at least 12 times longer than those with the river conditions before the project. Effect of relocation of intake towers for Daegu Metro City to upstream of Gumi City was also evaluated using the developed modeling system. It was observed that hydraulic residence time would be increased due to decreased flow rate and thus due to lowered water level. However, peak concentration differences were found to be about 2% lower in both places due to increased dispersion effect after the relocation.

Estimation on Average Residence Time of Particulate Matters in Geoje Bay using Particle Tracking Model (입자추적모델을 이용한 거제만의 입자물질 평균체류시간 산정)

  • Kim, Jin-Ho;Hong, Sok-Jin;Lee, Won-Chan;Kim, Jeong-Bae;Kim, Hyung-Chul;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • The residence time measures the time spent by a water parcel or a pollutant in a given water body. So residence time of water is widely used as an indicator of how a substance will remain in an estuary and it is used to enable comparisons among different water bodies. To estimate residence time of particulate matters from land and aquaculture, EFDC that includes particle tracking model was applied to the Geoje Bay. Modelled average residence time was about 65 days in the inner part. It meant it takes about 2 months for substance from land and aquaculture to be transported to the outside of Geoje Bay. The results indicated that residence time varied spatially throughout Geoje Bay depending on tidal flushing and, in general conditions, tidal flushing exerts the greatest influence to the flushing of Geoje Bay. This reveals relationships between residence times of particulate matters and physical properties of the bay and Geoje Bay is vulnerable to water quality problem.

Simulation of Water Quality Changes in the Saemangeum Reservoir Induced by Dike Completion (방조제 완공에 따른 호내부 수질변화 모의)

  • Suh, Seung-Won;Lee, Hwa-Young;Yoo, Sang-Cheol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.258-271
    • /
    • 2010
  • In order to figure out hydrodynamic and water quality changes after completion of dike construction of the Saemangeum, which behaves as a semi-enclosed estuarine lake, numerical simulations based on fine grid structure by using EFDC were intensively carried out. In this study some limitations of precedent study has been improved and gate operation were considered. Also 3 phases such as air-water-sediment interaction modeling was considered. It is clear that inner mixing of the Saemangeum is dominated by Mankyeong and Dongjin riverine discharges rather than the gate opening influence through the Lagrangian particle tracking simulations. Vertical DO structure after the dike completion shows steep gradient especially at Dongjin river estuary due to lessen of outer sea water exchange. Increasing SOD at stagnantly changed man-made reservoir might cause oxygen deficiency and accelerating degradation of water quality. According to TSI evaluation test representing eutrophication status, it shows high possibility of eutrophication along Mankyeong waterway in spite of dike completion, while the index is getting high after final closing along Dongjin waterway. Numerical tests with gate operations show significant differences in water quality. Thus it should be noted that proper gate operation plays a major role in preserving target water quality and management for inner development plan.

Prediction of Salinity Changes for Seawater Inflow and Rainfall Runoff in Yongwon Channel (해수유입과 강우유출 영향에 따른 용원수로의 염분도 변화 예측)

  • Choo, Min Ho;Kim, Young Do;Jeong, Weon Mu
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.297-306
    • /
    • 2014
  • In this study, EFDC (Environmental Fluid Dynamics Code) model was used to simulate the salinity distribution for sea water inflow and rainfall runoff. The flowrate was given to the boundary conditions, which can be calculated by areal-specific flowrate method from the measured flowrate of the representative outfall. The boundary condition of the water elevation can be obtained from the hourly tidal elevation. The flowrate from the outfall can be calculated using the condition of the 245 mm raifall. The simulation results showed that at Sites 1~2 and the Mangsan island (Site 4) the salinity becomes 0 ppt after the rainfall. However, the salinity is 30 ppt when there is no rainfall. Time series of the salinity changes were compared with the measured data from January 1 to December 31, 2010 at the four sites (Site 2~5) of Yongwon channel. Lower salinities are shown at the inner sites of Yongwon channel (Site 1~4) and the sites of Songjeong river (Site 7~8). The intensive investigation near the Mangsan island showed that the changes of salinity were 21.9~28.8 ppt after the rainfall of 17 mm and those of the salinity were 2.33~8.05 ppt after the cumulative rainfall of 160.5 mm. This means that the sea water circulation is blocked in Yongwon channel, and the salinity becomes lower rapidly after the heavy rain.

Analysis of Littoral Currents by the Coupled Hydrodynamic Model (복합해수유동 수치모형에 의한 조간대 연안류의 해석)

  • Lee, Jong-Sup;Kwon, Kyong-Hwan;Park, Il-Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.247-258
    • /
    • 2014
  • To evaluate the influence of the external force components on the littoral currents in the Gusipo beach, Jeonbuk, West Coast of Korea where a wide tidal sand flat developed, a coupled hydrodynamic model considered real time tidal currents and wave-induced currents was constructed in which the EFDC for tides and tidal currents, the SWAN for waves and the SHORECIRC for wave-induced currents were used as the hindcasting models. A series of field observations for tides, tidal currents and incident waves were carried out and especially to observe the littoral currents in the tidal sand flat, the GPS mounted and light weight drogues were used. Also wind data were collected from the adjacent weather station. To analyze the littoral current components, the numerical drogue tracking results considered real time winds, tides and waves were compared with the field drogue data. The drift speed of numerical drogues was reproduced as the range of 68.0~105.2% compared with the field data and the velocity error of main direction component showed a good result as -16.7~10.0%. As a result, in the mild slope tidal flat including wide surf zone, the tides and winds were the major affection component of the littoral currents, on the other hand, the wave-induced currents seemed the minor component when the incident wave heights were relatively small.

Three-Dimensional Mixing Characteristics in Seomjin River Estuary (섬진강 하구역의 3차원 혼합특성 연구)

  • Kim, Jong-Kyu;Kwak, Gyeong-Il;Jeong, Jeong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.164-174
    • /
    • 2008
  • In this study we try to identify the three-dimensional mixing characteristics of Seomjin River discharges in Seomjin River Estuary and Gwangyang Bay using a seasonal field observation (CTD) during spring tide and a three-dimensional numerical model with EFDC (Environmental Fluid Dynamics Code). The tidal elevation conditions of the four main tidal harmonic constituents on the open boundary and river discharges and thermal effluents at the specific boundary are considered. The calculated harmonic constants of tide and tidal current agreed well with those of observations at two stations for tide and two stations for tidal current. The model successfully reproduced well known the estuarine circulation in Seomjin River Estuary where tide and river discharges are dominant forcings. In the winter mean discharges case, tidal currents move Seomjin River discharges in Seomjin River mouth and in the summer mean discharges case, river flows move Seomjin River discharges near ae Seomjin River Estuary. A three-dimensional mixing characteristics of Seomjin River Estuary show well a three-dimensional estuarine circulation and thermal effluents effect to the seasonal variation of river discharges.

  • PDF

Study on Improvement of Oil Spill Prediction Using Satellite Data and Oil-spill Model: Hebei Spirit Oil Spill (인공위성 원격탐사 데이터와 수치모델을 이용한 해상 유출유 예측 향상 연구: Hebei Spirit호 기름 유출 적용)

  • Yang, Chan-Su;Kim, Do-Youn;Oh, Jeong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.435-444
    • /
    • 2009
  • In the case of oil spill accident at sea, information concerning the movement of spilled oil is important in making response strategies. Aircrafts and the satellites have been utilized for monitoring of spilled oil. In these days, numerical models are using to predict the movement of the spilled oil. In the future a coupling method of modeling and remote sensing data should be needed to predict more correctly the spilled oil. The purpose of this paper is to present an application of satellite image data to an oil spill prediction model as an initial condition. Environmental Fluid Dynamics Computer Code (EFDC) was used to predict the movement of the oil spilled from Hebei Spirit incident occurred in Taean coastal area on December 7,2007. In order to make the model initial condition and to compare the model results, two satellite images, KOMPSAT-2 MSC and ENVISAT ASAR obtained on December 8 and 11, were used during the period of the oil spill incident. The model results showed an improvement for the prediction of the spilled oil by using the initial condition deduced from satellite image data than the initial condition specified at the oil spill incident site in the respects of the distributed spilled area.