• Title/Summary/Keyword: EDM machine

Search Result 81, Processing Time 0.024 seconds

Micro-machining Characteristics using Focused Ion Beam (집속이온빔에 의한 미세가공 특성)

  • 이종항;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.636-639
    • /
    • 2003
  • It is difficult to machine below 10 micrometers by conventional machining methods, such as micro-EDM. However, ultra micro machining using focused ion beam(FIB) is able to machine to 50 nanometers. In addition, 3 dimensional structures can be made by a combination of FIB and CVD to the level of 10 nanometers. Die & moulds techniques are better than one-to-one machining techniques in the mass production of ultra size structures, in regards to production costs. In this case, the machining precision of die & moulds affects produced parts. Also, it is advantageous to machine die & moulds to the 10 micrometer level by FIB technique rather than other techniques. In this paper, the grooving characteristics for die & mould materials by FIB were carried out experimentally in order to compare the machining characteristics of FIB with conventional machining methods. The results showed that the machining parameters and the scanning path of FIB affects the precision. The machined width and depth of the groove varied depending on the required depth due to the redeposition of the sputtered ion material accumulating on both the bottom and the side of the wall.

  • PDF

Characteristics of Ball End Milling and Rotary Die-sinking Electrical Discharge Machining for the Cutting Inclination Location (가공경사면 위치에 따른 볼엔드밀가공과 회전식 형조방전가공 특성)

  • 왕덕현;김원일;박성은;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • In this study, work materials of the ree form surface shape was machined by ball end mill cutter according to the change of cutting location and depth, and the acquired data of cutting force, tool deflection and shape accuracy were analyzed. Cutting force results were obtained with tool dynamometer and tool deflection values were measured by a couple of eddy-current sensors. Shape accuracy was obtained by roundness tester and surface profile measuring machine. As inclination angle was decreased, cutting force was increased. Cutting force showed large value at $105^{\circ}$ and $150^{\circ}$. Tool deflection was less at down milling than at up milling, decreased at 45$^{\circ}$ and 120$^{\circ}$, and shown large tool deflection at $150^{\circ}$. Roughness values were found to be bad in the inside of surface shape tool deflection. Surface accuracy was obtained better precision in down milling than in up milling.

A Study on the Electrical Discharge Blind Hole Tap Machining of STD11 with Copper Electrode (구리전극봉을 이용한 합금공구강재(STD11)의 비관통 방전 탭 가공에 관한 연구)

  • Park, In-Soo;Wang, Duck-Hyun;Kim, Gi-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.38-44
    • /
    • 2017
  • The technology of electrical discharge tap machining may be appropriate for making thread out of highly brittle material. Especially, it is very difficult to machine tap with the traditional method if the brittle material has been hardened by quenching. In this study, the shape of electrical discharge blind hole tap machining was analyzed by discharge time, discharge current, and the flushing hole condition after quenched the tool steel of STD11 has discharged the tap shape with a screw-shaped copper(Cu) electrode. An experimental design was planned and analyzed by Taguchi robust experimental design. The result showed that the shape of the blind hole discharge tap was influenced by the flushing hole, discharge time, and discharge current. The most important factor of the processing conditions was found to be the discharge current. When blind hole EDM with a copper electrode with a flushing hole was conducted, the discharged shape was found to be smooth and the angle of the discharged tapped thread was also found to be close to the thread angle of $60^{\circ}$. As the values of discharge time and discharge current increased, the EDMed surface coarsened due to the increase of the single discharge energy and the shape of the thread collapsing.

Structural Design of a Dental Implant (2): Test Drafting and Manufacturing (치과용 임플란트 구조설계 (2): 시험설계 및 가공제작)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • This paper is the second paper among two papers which constitute the paper about the structural design of a dental implant. This paper completed the test drafting for the structural model of the new dental implant whose structural performance was confirmed and verified through the comparative structural analysis carried out in the first paper. This paper finished the structural design of a dental implant by manufacturing the dental implant using CNC machines and so forth on the basis of the completed draft and finally by evaluating the machining condition of the dental implant. The drafting work was performed using MDT(Mechanical Desk Top). The manufacturing work was carried out using CNC machines, general purpose milling machine, and Wire EDM. The manufactured surface condition of the dental implant was evaluated and confirmed finally using an electron microscope. As a result of evaluation, a testing dental implant with very good condition was designed and manufactured.

Design of Fly-Cutter for Antisymmetric Screw Rotor (비대칭형 스크류 로터용 플라이커터의 치형설계에 대한 연구)

  • Choi, Sang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 1997
  • In this study, we designed tooth profile of the fly-cutter for antisymmetric rotor which is used in screw compressor. In order to verify this profile, we manufactured three different pairs(J46, N46, P46) of antisymmetric rotor using fly-cutter. We got the following conclusions from this study. (1) We obtained better contact condition using 3pairs of rotor which are manufactured by the fly-cutter. (2) We could prevent the cutter interference near bottom point of the robe of screw rotor.

Micro Machining of Titanium Alloy Using Polycrystalline Diamond Tools (PCD 공구를 이용한 티타늄 합금의 미세 가공)

  • Moon, In Yong;Kim, Bo Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.284-291
    • /
    • 2013
  • Micro cutting of titanium alloy by polycrystalline diamond (PCD) tools was studied. Micro electro discharge machining (MEDM) was used to fabricate customized micro shaping tools from PCD blank. The tool was used to machine micro grooves on Ti alloy and the effects of depth of cut and machining length on tool wear, burr and surface roughness were studied. The shaping tool has cutting edge of a few ${\mu}m$. The crater size of the tool surface was increased with increasing capacitance of EDM machining conditions, which was used to control the surface roughness of the machined micro grooves.

STD11의 방전 가공 특성

  • 조용무;권오재;유용재;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.99-103
    • /
    • 1992
  • The EDM characteristics of STD11 steel with copper and graphite as electrode have been investigated by using Hansvedt SE-155B electro-discharge machine. The effects of parameters such as duty factor and frequency on electro-discharge machining were discussed. It was found that those parameters have significant influences on the relative electrode wear(REW), metal removalrate(MRR) surface integrity. When the duty factor was increased under the constant frequency of 2 KHz, the MRR was also increased and the REW was decreased. But REW was constant with higher duty factor of 50%. In the case of the smaller duty factor and the higher frequency, the surface roughness has become better. When the graphite was used as electrode at thes same condition, the tool electrode built-up phenomenon has been obsdrved.

A Study on the Transmutation Layer of CNC Wire-EDM'd Surface in Carbon Tool Steel (CNC WIRE-CUT 방전가공시 탄소공구강의 가공변질층에 관한연구)

  • Kim, Key-Sun;Kim, Chong-Yoob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.59-65
    • /
    • 1988
  • This paper describes the transmutation layer of CNC Wire electrical discharte machined surface. In order to analayze and invesigate transmutation layer of the carbon tool steel, workpieces was heat-treated by quenching, tempering, normaling. The obtained results are summarized as follows. 1. The result showed that wire electrical discharge machined surface region was transmuted into the recdast layer in the range of about 10${\mu}$m deep by resolidification and next zone was transmuted into the heat affected zone in the range of about 15${\mu}$m deep by high temperature. 2. The hardness of the recast layer and heat affected zone was decreased on its machined surface. 3. The more wire feedrate was increased, the more electrical discharge machine gap was decreased.

  • PDF

Positioning of the high precision linear motion system based on the voice coil actuator (보이스코일 액튜에이터를 기반으로 한 고정밀 직선이송 시스템의 위치결정)

  • Lee, Jun-Woo;Kim, Byeong-Hee;Chang, In-Bae
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.9-14
    • /
    • 1999
  • The voice coil actuator uses the Lorentz force between the magnetic field of the permanent magnets and the electromagnets to the motions and positioning. The small size, light weight and fast dynamic response of the these type actuators lead to admit them in the micro-positioning apparatus of the micro-machining systems. In this paper, the linear motion voice coil actuator is developed for the driving and positioning the rotating electrode of the electric discharge machine (EDM). The analyzed and measured results for the actuator are compared and discussed.

  • PDF

A Study on The Tooth Creating Algorithms of The Cycloid Curve Gear and The Third Polynomial Curve Gear (사이클로이드 곡선 및 3차 다항식 곡선기어의 치형 설계에 관한 연구)

  • 최종근;윤경태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.80-85
    • /
    • 2002
  • The free curve gear is a non-circular gear without any relating center, which can perform free curve motion for complicated mechanisms, and minimize the work area. In this study, an algorithms for tooth profile generation of free curve involute gear is developed. The algorithm uses the involute gear creating principle in which a gear can be generated by rolling with another standard involute one. Cycloid me and third polynomial curve gears were designed and verified by computer graphics. These gears are manufactured in the wire-cut EDM and examined in engagement with a standard spur gear. The results showed that the proposed algorithm is successful to design and to manufacture the free curve gear with concave and convex profiles.