• 제목/요약/키워드: EDF algorithm

검색결과 46건 처리시간 0.026초

A Feasible Condition for EDF-based Scheduling of Periodic Messages on a Synchronized Switched Ethernet (동기식 스위칭 이더넷에서 주기적 메시지에 대한 마감시간우선 기반 메시지 스케쥴링을 위한 조건)

  • Kim, Myung-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제16권4호
    • /
    • pp.403-410
    • /
    • 2010
  • The switched Ethernet has many features for real-time communications such as providing traffic isolation, large bandwidth, and full-duplex links, and so on. The switched Ethernet, however, cannot guarantee the timely delivery of a real-time message because message delay increases when collisions occurs at the output ports and message loss can even occur due to the overflow at the output buffer. Recently, many research efforts have been done to use the switched Ethernet as an industrial control network. In the industrial control network, sensors periodically sense the physical environment and transmit the sensed data to an actuator, and the periodic messages from sensors to actuators have typically real-time requirements such that those messages must be transmitted within their deadlines. This paper first suggests a feasible condition for EDF (Earliest Deadline First)-based scheduling of periodic messages on a synchronized switched Ethernet and a message scheduling algorithm which satisfies the proposed feasible condition. Pedreiras, et al. [10] suggested a feasible condition for message scheduling on the Ethernet (shared media Ethernet), but there has been no research result on the scheduling condition on the switched Ethernet until now. We compared the real-time message scheduling capacity between the Ethernet and the switched Ethernet by simulation. The simulation result shows that the message scheduling capacity of the Ethernet has almost remained constant as the number of nodes on the network increases, but, in the case of the switched Ethernet, the message scheduling capacity has increased linearly according to the number of nodes on the network.

Developing Dynamic Scheduling Algorithm of VoD Server Server System Performance (시스템 성능 향상을 위한 VoD서버의 능동 스케줄링 알고리즘 개발)

  • 김정택;고인선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.65-65
    • /
    • 2000
  • For Video on Demand(VoD) servers, a design of an efficient scheduler is important to the support a large number of clients having various playback speeds and receiving rates. In this paper, we propose the scheduling algorithm to handle establishing deadlines and selection using the earliest deadline first. To establish deadlines and selections, the period of the receiving rates for each client is located between the over-max receiving rate and the over-playback rate. To avoid video starvation and the buffer overflow of each client, the proposed algorithm guarantees providing the admission control. Because of establishing deadlines and selection, period of each client receiving is between one over max receiving rate and one over play back rate. Using Virtual Buffer in server, scheduling load is reduced. The efficiency of the proposed algorithm is verified using a Petri Net_Based simulation tool, Exspect.

  • PDF

A Transaction Manager for Real-Time Database Systems Using Classified Queue (분류된 클래스 큐를 이용한 실시간 데이터베이스 시스템의 트랜잭션 관리기)

  • Kim, Gyoung-Bae;Bae, Hae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • 제5권11호
    • /
    • pp.2751-2762
    • /
    • 1998
  • In this paper, a new priority assignment ploicy and concurrency control for improvement of transaction predictability and performance are proposed. We present a new priority assignment algorithm called classified priority assignment(CPA), which solves the defects of Earliest Deadline First(EDF) by using class and bucket, and deals with real-time transaction and time-sharing transaction effectively. Also, we present a new concurrency control policy called conditional optimistic concurrency control using lock. It uses optimistic concurrency control for improvement of predictability, and solves transaction conflict by considering priority and execution time of transaction to waste less system resource.

  • PDF

Scheduling Algorithm to Minimize Total Error for Imprecise On-Line Tasks

  • Song, Gi-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • 제10권12호
    • /
    • pp.1741-1751
    • /
    • 2007
  • The imprecise computation technique ensures that all time-critical tasks produce their results before their deadlines by trading off the quality of the results for the computation time requirements of the tasks. In the imprecise computation, most scheduling problems of satisfying both 0/1 constraints and timing constraints, while the total error is minimized, are NP-complete when the optional tasks have arbitrary processing times. In the previous studies, the reasonable strategies of scheduling tasks with the 0/1 constraints on uniprocessors and multiprocessors for minimizing the total error are proposed. But, these algorithms are all off-line algorithms. Then, in the on-line scheduling, NORA(No Off-line tasks and on-line tasks Ready upon Arrival) algorithm can find a schedule with the minimum total error. In NORA algorithm, EDF(Earliest Deadline First) strategy is adopted in the scheduling of optional tasks. On the other hand, for the task system with 0/1 constraints, NORA algorithm may not suitable any more for minimizing total error of the imprecise tasks. Therefore, in this paper, an on-line algorithm is proposed to minimize total error for the imprecise real-time task system with 0/1 constraints. This algorithm is suitable for the imprecise on-line system with 0/1 constraints. Next, to evaluate performance of this algorithm, a series of experiments are done. As a consequence of the performance comparison, it has been concluded that IOSMTE(Imprecise On-line Scheduling to Minimize Total Error) algorithm proposed in this paper outperforms LOF(Longest Optional First) strategy and SOF(Shortest Optional First) strategy for the most cases.

  • PDF

A Real-Time Disk Prefetch Scheme for Continuous Media Playback (연속매체 상영을 위한 실시간 디스크 프리팻칭 기법)

  • Lim Sung Chae
    • The KIPS Transactions:PartA
    • /
    • 제11A권7호
    • /
    • pp.547-554
    • /
    • 2004
  • To play back CM (Continuous Media) in online mode, the multimedia system Is required to have a real-time disk scheduling scheme that can efficiently fulfill the strict temporal constraints of serviced CM streams to prevent hiccups. In general, such disk scheduling is performed based on the concept of periodic prefetching since a CM stream has a rather long Playback time. In this paper, we also propose a periodic prefetching scheme that runs by using real-time disk channels, called on-time delivery channels. Since the channels are generated from the bulk-SCAN algorithm and they can be allocated in a very flexible manner based on the EDF (earliest-deadline-first) algorithm, the proposed scheme provides a better Performance in terms of I/O throughput and the average response time, as well as hiccup-free playback of concurrent CM streams. To show that the proposed scheme outperforms other methods, we give some simulation results.

Dynamic Voltage Scaling Algorithms for Hard Real-Time Systems Using Efficient Slack Time Analysis (효율적인 슬랙 분석 방법에 기반한 경성 실시간 시스템에서의 동적 전압 조절 방안)

  • 김운석;김지홍;민상렬
    • Journal of KIISE:Computer Systems and Theory
    • /
    • 제30권12호
    • /
    • pp.736-748
    • /
    • 2003
  • Dynamic voltage scaling(DVS), which adjusts the clock speed and supply voltage dynamically, is an effective technique in reducing the energy consumption of embedded real-time systems. The energy efficiency of a DVS algorithm largely depends on the performance of the slack estimation method used in it. In this paper, we propose novel DVS algorithms for periodic hard real-time tasks based on an improved slack estimation algorithm. Unlike the existing techniques, the proposed method can be applied to most priority-driven scheduling policies. Especially, we apply the proposed slack estimation method to EDF and RM scheduling policies. The experimental results show that the DVS algorithms using the proposed slack estimation method reduce the energy consumption by 20∼40 % over the existing DVS algorithms.

Efficient Scheduling of Soft Aperiodic Tasks Using Surplus Slack Time (잉여 여유시간을 이용한 연성 비주기 태스크들의 효율적인 스케줄링)

  • Kim, Hee-Heon;Piao, Xuefeng;Park, Moon-Ju;Park, Min-Kyu;Cho, Yoo-Kun;Cho, Seong-Je
    • Journal of KIISE:Computer Systems and Theory
    • /
    • 제36권1호
    • /
    • pp.9-20
    • /
    • 2009
  • In a real-time system with both hard real-time periodic tasks and soft real-time aperiodic tasks, it is important to guarantee the deadlines of each periodic task as well as obtain fast response time for each aperiodic task. This paper proposes Enhanced Total Bandwidth Server (ETBS) with possibly shorter response time than Total Bandwidth Server (TBS), which is efficient and widely used for servicing aperiodic tasks. For uniprocessor system using Earliest Deadline First (EDF) scheduling algorithm, ETBS assigns an on-line deadline to each aperiodic task considering a surplus slack time which gained for every unit execution time of periodic job. The proposed method can fully utilize the processor while meeting all the deadlines of periodic tasks. We show that the proposed ETBS provides better response time of aperiodic tasks than TBS theoretically, but has the same computational complexity as TBS, O(1). Simulation results show that the response time of aperiodic tasks with ETBS are shorter than one with TBS.

A Study of Real-Time System(RTS) Efficiency in e-Trade (전자무역의 RTS 효율성에 관한 연구)

  • Jeong Boon-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제10권5호
    • /
    • pp.783-791
    • /
    • 2006
  • In e-Trade, Real-Time System(RTS) plays a very important role. Each task is set with limited time, and appointed regulations must be followed because it can be greatly damaged if it cannot be executed in limited time. In e-Trade, the scheduling possibility techniques generally use periodical tasks; however, it is necessary to study more stable prediction scheduling possibility algorithm by using other task timing conditions and non-periodical task scheduling tasks. This study proposed an algorithm to increase the prediction possibility using individual task utilization rate, and presented scheduling possibility conditions using existing whole task utilization rate and the proposed algorithm.

Unifying User Requests for Multimedia Storage Systems (멀티미디어 저장 시스템을 위한 사용자 요청 통합)

  • Hwang, In-Jun
    • Journal of KIISE:Databases
    • /
    • 제29권1호
    • /
    • pp.15-26
    • /
    • 2002
  • Most work on multimedia storage systems has assumed that client will be serviced using a round-robin strategy. The server services the clients in rounds and each client is allocated a time slice within that round. Furthermore, most such algorithms are evaluated on the basis of a tightly coupled cost function. This is the basis of well-known algorithm such as FCFS, SCAN, SCAN-EDF, etc. In this paper, we describe a scheduling module called Request Unifier(RU) that takes as input, a set of client request, and a set of constraints on the desired performance such as client waiting time or maximum disk bandwidth, and a cost function. It produces as output a Unified Read Request(URR), telling the storage server which data items to read and when these data items to be delivered to the clients. Given a cost function, a URR is optimal if there is no other URR satisfying the constraints with a lower cost. We present three algorithms in this paper that can accomplish this kind of request merging and compare their performance through an experimental evaluation.

A Dynamic Voltage Scaling Algorithm for Aperiodic Tasks (비주기 태스크를 위한 동적 가변 전압 스케쥴링)

  • Kwon, Ki-Duk;Jung, Jun-Mo;Kwon, Sang-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제7권5호
    • /
    • pp.866-874
    • /
    • 2006
  • This paper proposes a new Dynamic Voltage Scaling(DVS) algorithm to achieve low-power scheduling of aperiodic hard real-time tasks. Aperiodic tasks schedulingcannot be applied to the conventional DVS algorithm and result in consuming energy more than periodic tasks because they have no period, non predictable worst case execution time, and release time. In this paper, we defined Virtual Periodic Task Set(VTS) which has constant period and worst case execution time, and released aperiodic tasks are assigned to this VTS. The period and worst case execution time of the virtual task can be obtained by calculating task utilization rate of both periodic and aperiodic tasks. The proposed DVS algorithm scales the frequency of both periodic and aperiodic tasks in VTS. Simulation results show that the energy consumption of the proposed algorithm is reduced by 11% over the conventional DVS algorithm for only periodic task.

  • PDF