• Title/Summary/Keyword: ECT(eddy current testing)

Search Result 82, Processing Time 0.035 seconds

Finite Element Method Analysis of Eddy Current Array Probe According to Defects Variation of Steam Generator (배열와전류프로브를 이용한 증기발생기 세관의 결함 변화에 따른 유한요소해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.54-58
    • /
    • 2009
  • In this paper, the ECT(eddy current testing) signal analysis of eddy current array probe for inspection of SG(steam generator) tube in NPP(nuclear power plant) using electromagnetic FEM(finite element method) was performed. To obtain the electromagnetic characteristics of probes, the governing equation was derived from Maxwell's equation, and the problem was solved by using the 3-dimensional FEM. The types of defects were FBH(flat bottomed hole) and OD groove, Spiral groove, natural defects(pitting, SCC, multiple SCC, wear). The depth of FBH defects were 20%, 40%, 60%, 80%, 100 of SG tube thickness, and it was assumed that the defects were located on the tube outside. And the operation frequency of 100kHz, 300kHz and 400kHz were used. Material of specimen was Inconel 600 which is usually used for SG tubes in NPP. The signal difference could be observed according to the variation of size and depth on FBH defects and operation frequencies. The results in this paper can be helpful when the ECT signals from EC array probe are evaluated and analyzed.

  • PDF

Performance improvement of Classification of Steam Generator Tube Defects in Nuclear Power Plant Using Neural Network (신경회로망을 이용한 원전SG 세관 결함패턴 분류성능 향상기법)

  • Jo, Nam-Hoon;Han, Ki-Won;Song, Sung-Jin;Lee, Hyang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1224-1230
    • /
    • 2007
  • In this paper, we study the classification of defects at steam generator tube in nuclear power plant using eddy current testing (ECT). We consider 4 defect patterns of SG tube: I-In type, I-Out type, V-In type, and V-Out type. Through numerical analysis program based on finite element modeling, 400 ECT signals are generated by varying width and depth of each defect type. In order to improve the classification performance, we propose new feature extraction technique. After extracting new features from the generated ECT signals, multi-layer perceptron is used to classify the defect patterns. Through the computer simulation study, it is shown that the proposed method achieves 100% classification success rate while the previous method yields 91% success rate.

Numerical Analysis Methods for Eddy Current Testing for Heat Exchanger Tube with Axi-symmetric Defects (열교환기 전열관의 결함에 대한 와전류 탐상 수치해석방법)

  • Kim, Chang-Wook;Seo, Jang-Won;Kim, Shin;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.831-833
    • /
    • 2000
  • In this paper, a numerical analysis algorithm of eddy current testing(ECT) for heat exchanger tube with axi-symmetric defects using finite element method(FEM) is presented. In the ECT FEM analysis, we used trianglular and rectangular elements for exact signal of ECT for variable shape of defects. This paper presents a systematic and efficient numerical analysis algorithm for ECT. We employ the LU decomposition and Cholesky method for solving the system matrix. This numerical analysis algorithm is effectively applied to heat exchanger tube with defects.

  • PDF

Study on Signal Processing in Eddy Current Testing for Defects in Spline Gear (스플라인 기어부 결함의 와전류검사 신호처리에 관한 연구)

  • Lee, Jae Ho;Park, Tae Sung;Park, Ik Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.195-201
    • /
    • 2016
  • Eddy current testing (ECT) is commonly applied for the inspection of automated production lines of metallic products, because it has a high inspection speed and a reasonable price. When ECT is applied for the inspection of a metallic object having an uneven target surface, such as the spline gear of a spline shaft, it is difficult to distinguish between the original signal obtained from the sensor and the signal generated by a defect because of the relatively large surface signals having similar frequency distributions. To facilitate the detection of defect signals from the spline gear, implementation of high-order filters is essential, so that the fault signals can be distinguished from the surrounding noise signals, and simultaneously, the pass-band of the filter can be adjusted according to the status of each production line and the object to be inspected. We will examine the infinite impulse filters (IIR filters) available for implementing an advanced filter for ECT, and attempt to detect the flaw signals through optimization of system design parameters for detecting the signals at the system level.

Impedance Characteristics Analysis of Eddy Current Testing Sensor for T/R Probe Design (와전류탐상 T/R 프로브 제작을 위한 센서의 임피던스 특성해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.566-569
    • /
    • 2008
  • 와전류탐상(ECT) Transmit-Receive 프로브를 이용한 ECT 방법은 센서코일의 유도기전력의 변화를 관찰하여 피검사체의 결함이나 특성의 변화를 탐지해내는 방법이다. ECT T/R 프로브는 여러 개의 Pancake 코일로 구성되어있고, 각각의 코일은 Transmit 코일과 Receive 코일로 나뉜다. 본 논문은 실제 TH 프로브 제작에 앞서 동일한 특성을 갖는 와전류센서를 설계 및 제작하여 그 특성을 파악하였다. 와전류센서에 인가되는 시험주파수와 Lift-off의 변화에 대한 특성을 파악하고 와전류센서의 임피던스값을 산출하여 정규화 임피던스도를 그려 와전류센서의 특성을 살펴보았다.

  • PDF

The Analysis of Eddy Current Testing Signals Considering Influence of Ferromagnetic Support Plate (강자성체 지지판의 영향이 고려된 와전류탐상의 신호해석)

  • Kim, Yong-Taek;Lee, Hyang-Beom;Yim, Chang-Jae;Choi, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.50-52
    • /
    • 2005
  • In this paper, the analysis of the eddy current testing(ECT) signals under thc Influence of the ferromagnetic support plate was performed in steam generator(SG) tube of nuclear power plant. In order to remove the influence of the ferromagnetic support plate, a multi-frequency ECT was used. The models which was established for the analysis of the signals is calculated using numerical analysis of finite element method. Through the result of numerical analysis, improved signals is acquired considering the influence of the ferromagnetic support plate using mixing of multi-frequency This paper is presented the residual errors and the phase changes for analysis of the defect signals which should be considered when conducting a ECT using multi-frequency.

  • PDF

Development of a Multichannel Eddy Current Testing Instrument(I) (다중채널 와전류탐상검사 장치 개발(I))

  • Lee, Hee-Jong;Nam, Min-Woo;Cho, Chan-Hee;Yoon, Byung-Sik;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.155-161
    • /
    • 2010
  • Recently, the electromagnetic techniques of the eddy current testing(ECT), alternating current field testing, magnetic flux leakage testing and remote field testing have been used as a nondestructive evaluation method based on the electromagnetic induction. The eddy current testing is now widely accepted as a NDE method for the heat exchanger tube in the electric power industry, chemical, shipbuilding, and military. The ECT system mainly consists of the synthesizer module, analog module, analog-to-digital converter, power supplier, and data acquisition and analysis program. In this study, the synthesizer module and the analog module which are essential to the ECT system were primarily developed. The developed ECT system is basically a multifrequency type which is able to inject the maximum four frequencies based on the frequency and time domain multiplexing method. Conclusively, we confirmed that the EC signal was processed appropriately in each circuit modules, and the Lissajous EC signal was displayed in the impedance plane.

Evaluation of Nondestructive Evaluation Size Measurement for Integrity Assessment of Axial Outside Diameter Stress Corrosion Cracking in Steam Generator Tubes (증기발생기 전열관 외면 축균열 건전성 평가를 위한 비파괴검사 크기 측정 평가)

  • Joo, Kyung-Mun;Hong, Jun-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy600 HTMA tubes has been increasing. As a result, SGs with Alloy600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and abilty of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

Prediction of Defect Size of Steam Generator Tube in Nuclear Power Plant Using Neural Network (신경회로망을 이용한 원전SG 세관 결함크기 예측)

  • Han, Ki-Won;Jo, Nam-Hoon;Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.383-392
    • /
    • 2007
  • In this paper, we study the prediction of depth and width of a defect in steam generator tube in nuclear power plant using neural network. To this end, we first generate eddy current testing (ECT) signals for 4 defect patterns of SG tube: I-In type, I-Out type, V-In type, and V-Out type. In particular, we generate 400 ECT signals for various widths and depths for each defect type by the numerical analysis program based on finite element modeling. From those generated ECT signals, we extract new feature vectors for the prediction of defect size, which include the angle between the two points where the maximum impedance and half the maximum impedance are achieved. Using the extracted feature vector, multi-layer perceptron with one hidden layer is used to predict the size of defects. Through the computer simulation study, it is shown that the proposed method achieves decent prediction performance in terms of maximum error and mean absolute percentage error (MAPE).

Analysis and Understanding of Eddy Current Problem using electromagnetic field Packeg (전자장 해석 프로그램을 이용한 와전류 문제의 해석 및 이해)

  • Lim, Keon-Gyu;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2203-2204
    • /
    • 2006
  • When the coil with alternating current approaches to the conductor the eddy current flows in conductor. Eddy current is concentrated on the conductor surface and decrescent because of skin effet.. In this paper investigated eddy current characteristic that is happened in conductor. Analyzed characteristic using electromagnetic field finite element analysis program that is commercialized to analyze value of eddy current and penetration depth. Analyzed creation value of eddy current and penetration depth in conductor that change operation frequency and the material of conductor, coil outside diameter, inside diameter, position, type of conductor from analyzed eddy current characteristic. The results. using distribution of eddy current and penetration depth data is that will help to forecast ECT(Eddy Current Testing), Eddy current application and use field, eddy current loss.

  • PDF