• Title/Summary/Keyword: ECOLOGICAL RESTORATION MODEL

Search Result 140, Processing Time 0.03 seconds

Use of GIS to Develop a Multivariate Habitat Model for the Leopard Cat (Prionailurus bengalensis) in Mountainous Region of Korea

  • Rho, Paik-Ho
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.229-236
    • /
    • 2009
  • A habitat model was developed to delineate potential habitat of the leopard cat (Prionailurus bengalensis) in a mountainous region of Kangwon Province, Korea. Between 1997 and 2005, 224 leopard cat presence sites were recorded in the province in the Nationwide Survey on Natural Environments. Fifty percent of the sites were used to develop a habitat model, and the remaining sites were used to test the model. Fourteen environmental variables related to topographic features, water resources, vegetation and human disturbance were quantified for 112 of the leopard cat presence sites and an equal number of randomly selected sites. Statistical analyses (e.g., t-tests, and Pearson correlation analysis) showed that elevation, ridges, plains, % water cover, distance to water source, vegetated area, deciduous forest, coniferous forest, and distance to paved road differed significantly (P < 0.01) between presence and random sites. Stepwise logistic regression was used to develop a habitat model. Landform type (e.g., ridges vs. plains) is the major topographic factor affecting leopard cat presence. The species also appears to prefer deciduous forests and areas far from paved roads. The habitat map derived from the model correctly classified 93.75% of data from an independent sample of leopard cat presence sites, and the map at a regional scale showed that the cat's habitats are highly fragmented. Protection and restoration of connectivity of critical habitats should be implemented to preserve the leopard cat in mountainous regions of Korea.

Functional Assessment of Jilnalnup Wetland by HGM (HGM을 이용한 질날늪 기능평가 연구)

  • Jin, Yi Hua;Li, Lan;Moon, Sang Kyun;Koo, Bonhak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.13-22
    • /
    • 2013
  • Wetlands occupy an important ecological position on the earth, carrying out very important functions and roles both ecologically and hydrologically. However, due to past industrialization, not only wetland areas but also the biodiversity of organisms has severely decreased due to several artificial interferences and damage as wetlands began to be perceived simply as targets for development and reclamation. However in recent times, with the importance of wetlands coming to the fore, the assessment of the function and value of wetlands is being made for their wise use and systematic maintenance. Accordingly, this study targeted the Jilnal Wetlands located in Haman, Gyeongnam, and conducted a functional appraisal of this wetland using the modified HGM Model which was modified & developed appropriately for the actual conditions of our country. The result of its appraisal by selecting the Upo Wetland as the reference wetland, which is a criterion of the index, showed a comparatively positive functional index with 0.89 of the Upo Wetland average. This means that the Jilnal Wetland carrys out more than 89% of the functioning of the Upo Wetland. In this regard, it is thought that the Jilnal Wetland could carry out the wetland functioning equivalent to that of the Upo Wetland through a little more systematic management.

Development of the GIS-based Stream Hydromorphological Structure Assessment System for Small and Midium-size Streams (GIS 기반 중·소규모 하천의 수문지형 물리적 구조 평가 체계 개발)

  • Kim, Man-Kyu;Kim, Hye-Ju;Park, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.93-107
    • /
    • 2008
  • Recently, there have been many projects regarding restoration of streams to recover their environmental and ecological functions. For the restoration of streams, it is valuable academically and economically to evaluate the ecological condition of streams and build a plan and an object for restoring streams based on that. On the other hand, one of the methods to figure out the ecological condition of streams is to evaluate the hydromorphological structure of stream. In this study we have developed a field survey system using the stream assessment methode of LAWA (Laenderarbeitsgemeinschaft Wasser in Germany) that can assess the hydromorphological structure of small and medium streams. In addition, we constructed a GIS-based stream assesment system which can support auto mapping system and report writing, using the survey results. These systems are aimed to help people in the area of restoring streams perceive the natural and ecological condition of streams in the process of making plans and managing the projects, and they also try to help in collecting raw data to determine an ideal potential model to which an existing stream should be turned.

  • PDF

Development of an Appropriate Deposit-Estimation System for Restoration of Land-Use-Changed Forest Lands Using the Delphi Technique (델파이 기법을 활용한 적정 산지복구비 산출체계의 개발)

  • Koo, Kiwoon;Kweon, Hyeongkeun;Lee, Sang In;Kwon, Semyung;Seo, Jung Il
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.630-647
    • /
    • 2021
  • We determined the current problem of the restoration deposit-estimation system, stipulated by the Mountainous Districts Management Act, using the Delphi technique. Consequently, we proposed a standard model for forest land restoration to derive a reasonable deposit-estimation system. With the result of the Delphi survey, the inappropriateness of land-use type and slope gradient classifications was shown; the insufficiency of standard works was a significant problem in the current system. A way to solve these problems was devised, to reorganize the current land-use type into the subject of the site. The specific subjects included the following: (i) to permit or report forest land-use change and temporary use of forest land, (ii) to report temporary use of forest land, (iii) to permit stone collection or sale for mineral mining, and (iv) to allow sediment collection. The current slope gradient subdivision into (a) θ<10°, (b) 10°≦θ<15°, (c) 15°≦θ<20°, (d) 20°≦θ<25°, (e) 25°≦θ<30°, and (f) θ≧30° and the reorganization of 17 standard works into 22 standard works were deemed as solutions, along with seven additional works. We developed 24 standard models for the forest land restoration project based on the aforementioned results. The deposits estimated by these models ranged from 34,185,000 (Korean) won to 607,403,000 won. If additional works, premiums, discounts, and supervision fees are added to the models, the deposit increases to an estimated 668,143,000 won subject to permission for stone collection or sale and mineral mining. Experts agree on the distribution of the restoration deposits estimated by these models at a high level in the Delphi survey. Our findings are expected to contribute to securing the appropriateness of the restoration cost deposited for the smooth performance of the vicariously executed restoration project.

A Simplified Model for Physical Habitat Simulation in Evaluation of Environmental Flow (생태유량 산정을 위한 간편 물리서식처 모의 모형)

  • Im, Dongkyun;Choi, Youngwoo;Choi, Sung-Uk;Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.147-154
    • /
    • 2011
  • Physical habitat assessment models based on Instream Flow Incremental Methodology have been developed as a decision making tool to estimate appropriate discharge for environmental flow and water use management. These models, however, require extensive knowledge on various academic disciplines, complicated input data, and empirical data. We propose a Simplified Habitat (SIMHAB) simulation model for the estimation of physical structure of fish habitat and environmental flow at the planning stage. SIMHAB is applied to a river system for which physical and ecological data are available, and its applicability is investigated. Simulated results appeared to be similar to field survey data and those of such models as PHABSIM and River2D. However, SIMHAB requires much less input data. As such, the proposed model, SIMHAB can easily be applicable to river restoration projects including designing of physical habitat, estimation of environmental flow, and water resource management.

Species Distribution Modeling of Endangered Mammals for Ecosystem Services Valuation - Focused on National Ecosystem Survey Data - (생태계 서비스 가치평가를 위한 멸종위기 포유류의 종분포 연구 - 전국자연환경조사 자료를 중심으로 -)

  • Jeon, Seong Woo;Kim, Jaeuk;Jung, Huicheul;Lee, Woo-Kyun;Kim, Joon-Soon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • The provided habitat of many services from natural capital is important. But because most ecosystem services tools qualitatively evaluated biodiversity or habitat quality, this study quantitatively analyzed those aspects using the species distribution model (MaxEnt). This study used location point data of the goat(Naemorhedus caudatus), marten(Martes flavigula), leopard cat(Prionailurus bengalensis), flying squirrel(Pteromys volans aluco) and otter(Lutra lutra) from the 3rd National Ecosystem Survey. Input data utilized DEM, landcover classification maps, Forest-types map and digital topographic maps. This study generated the MaxEnt model, randomly setting 70% of the presences as training data, with the remaining 30% used as test data, and ran five cross-validated replicates for each model. The threshold indicating maximum training sensitivity plus specificity was considered as a more robust approach, so this study used it to conduct the distribution into presence(1)-absence(0) predictions and totalled up a value of 5 times for uncertainty reduction. The test data's ROC curve of endangered mammals was as follows: growing down goat(0.896), otter(0.857), flying squirrel(0.738), marten(0.725), and leopard cat(0.629). This study was divided into two groups based on habitat: the first group consisted of the goat, marten, leopard cat and flying squirrel in the forest; and the second group consisted of the otter in the river. More than 60 percent of endangered mammals' distribution probability were 56.9% in the forest and 12.7% in the river. A future study is needed to conduct other species' distribution modeling exclusive of mammals and to develop a collection method of field survey data.

An Assessment of Landscape Ecological Value of Greenbelt Areas in the Seoul Metropolitan Area (수도권 개발제한구역의 경관생태학적 가치평가)

  • Oh, Kyushik;Park, Jihye;Lee, Dongwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.867-878
    • /
    • 2011
  • Development restriction areas (greenbelt areas) of Korea were recognized in 1970 as a means to control urban sprawl and conserve the natural environment. Although there have been some achievements, for a long time many planners and residents have requested a redefining of the green belt due to individual property rights restrictions and urban management problems. In fact, a lot of the greenbelt area is being destroyed by urban development. Therefore, conservation of ecological spaces in the green belt is needed to maintain urban naturalness. In this regard, this study suggests efficient methods to manage the greenbelt through the adoption of a landscape ecological value assessment. The greenbelt of the Seoul Metropolitan Area (SMA) is represented as the case study because there has been mounting pressure to develop the area in Korea. In this study, the assessment of the landscape ecology in the greenbelt area focuses on landscape structure and function. The assessment consists of the following steps: First, patches were derived by NDVI analysis using landsat remote sensing data. Second, characteristics of the patches were quantified by analyzing the landscape structure, such as patch size and shape index. Lastly, the gravity model and least cost path analysis to assess connectivity were applied to evaluate the landscape function in the green belt areas. The assessment result showed that 48.45% of green belt area should be conserved to maintain ecological stability and function. Moreover, major ecological networks were identified near the large patches in the northern and southern areas. However, relative low ecological values were identified in the western part of the green belt area due to the lack of green spaces. Furthermore, some development plans in the green belt were also identified near the conservation area. Based on these results, the restoration needed areas to enhance ecological value in green belt were displayed. This study suggests efficient management of the greenbelt area, which is disappearing as a result of urban development. The area for conservation chosen in this study should be managed carefully in urban planning. Finally, the results of this study can be used in green belt polices and plans for the promotion of ecological naturalness and stability.

Long-term Effects on Forest Biomass under Climate Change Scenarios Using LANDIS-II - A case study on Yoengdong-gun in Chungcheongbuk-do, Korea - (산림경관천이모델(LANDIS-II)를 이용한 기후변화 시나리오에 따른 산림의 생물량 장기변화 추정 연구 -충청북도 영동군 학산면 봉소리 일대 산림을 중심으로 -)

  • Choi, Young-Eun;Choi, Jae-Yong;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.27-43
    • /
    • 2019
  • This study applied the LANDIS-II model to the forest vegetation of the study area in Yeongdong-gun, Korea to identify climate effects on ecosystems of forest vegetation. The main purpose of the study is to examine the long-term changes in forest aboveground biomass(AGB) under three different climate change scenarios; The baseline climate scenario is to maintain the current climate condition; the RCP 4.5 scenario is a stabilization scenario to employ of technologies and strategies for reducing greenhouse gas emissions; the RCP 8.5 scenario is increasing greenhouse gas emissions over time representative with 936ppm of $CO_2$ concentration by 2100. The vegetation survey and tree-ring analysis were conducted to work out the initial vegetation maps and data for operation of the LANDIS model. Six types of forest vegetation communities were found including Quercus mongolica - Pinus densiflora community, Quercus mongolica community, Pinus densiflora community, Quercus variabilis-Quercus acutissima community, Larix leptolepis afforestation and Pinus koraiensis afforestation. As for changes in total AGB under three climate change scenarios, it was found that RCP 4.5 scenario featured the highest rate of increase in AGB whereas RCP 8.5 scenario yielded the lowest rate of increase. These results suggest that moderately elevated temperatures and $CO_2$ concentrations helped the biomass flourish as photosynthesis and water use efficiency increased, but huge increase in temperature ($above+4.0^{\circ}C$) has resulted in the increased respiration with increasing temperature. Consequently, Species productivity(Biomass) of trees decrease as the temperature is elevated drastically. It has been confirmed that the dominant species in all scenarios was Quercus mongolica. Like the trends shown in the changes of total AGB, it revealed the biggest increase in the AGB of Quercus mongolica under the RCP 4.5 scenario. AGB of Quercus mongolica and Quercus variabilis decreased in the RCP 4.5 and RCP 8.5 scenarios after 2050 but have much higher growth rates of the AGB starting from 2050 under the baseline scenario. Under all scenarios, the AGB of coniferous species was eventually perished in 2100. In particular they were extinguished in early stages of the RCP 4.5 and RCP 8.5 scenarios. This is because of natural selection of communities by successions and the failure to adapt to climate change. The results of the study could be expected to be effectively utilized to predict changes of the forest ecosystems due to climate change and to be used as basic data for establishing strategies for adaptation climate changes and the management plans for forest vegetation restoration in ecological restoration fields.

Environmental Impact Assessments along with Construction of Residential and Commercial Complex (주거단지 건설이 하천에 미치는 생태영향평가)

  • An, Kwang-Guk;Han, Jeong-Ho;Lee, Jae Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.631-648
    • /
    • 2012
  • The integrative ecological approaches of chemical assessments, physical habitat modelling, and multi-metric biological health modelling were applied to Gwanpyeong Stream within Gap-Stream watersheds to evaluate environmental impacts on the constructions of residential and commercial complex. For the analysis, the surveys conducted from 45 sites of reference streams within the Gap-Stream watershed and 3 regular sites during 2009 - 2010. Physical habitat health, based on the habitat model of Qualitative Habitat Evaluation Index(QHEI) declined from the headwaters(good - fair condition) to the downstream(poor condition). Chemical water quality, based turbidity and electric conductivity(EC), was degraded toward to the downstream, and especially showed abrupt increases, compared to the values of control streams(CS). Also, concentrations of chlorophyll-a in the downstreams were greater compared to the control stream(CS), indicating an eutrophication. Biological health conditions, based on the Index of Biological Integrity(IBI) using fish assemblages, averaged 19.3 which is judged as a fair condition by the biological criteria of the Ministry of Environment, Korea. The comparisons of model metric values in sensitive species and riffle-benthic species on the Maximum Species Richness Line(MSRL) of 45 reference streams indicated a massive disturbances in all sampling locations. Also, tolerance guild and trophic guild analyses suggest that dominances of tolerant species and omnivores were evident, indicating a biological degradation by habitat disturbances and organic matter pollutions. There was no distinct longitudinal variations of IBI model values from the headwater to the downstream in spite of slight chemical and habitat health gradients among the sampling sites. Overall, integrative ecological health(IEH) scores, based on the chemical, physical, and biological parameters, were low compared to the 45 reference streams due to physical and chemical disturbances of massive constructions of the residential and commercial complex. This stream, thus showed a tendency of typical urban streams which are disturbed in the chemical water quality, habitat structures, and biological integrity. Effective stream management plans and restoration strategies are required in this urban stream for improving integrative stream health.

The Current Status and Challenges of Forest Landscape Models (산림 경관 모형의 현황과 과제)

  • Ko, Dongwook W.;Sung, Joo Han;Lee, Young Geun;Park, Chan Ryul
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Korea now boasts a vastly forested landscape resulting from a successful forest restoration projects carried out in the past several decades. However, Korea's forest now face new challenges, such as the rapidly increasing mature forests, climate change, and various novel forest disturbances with both natural and anthropogenic causes. Considering the extensive spatial and temporal scale of the forests and the challenges it face, it is necessary to utilize a tool that can properly tackle the issues with such nature. This brings our attention to Forest Landscape Models, which have been actively developed and used to improve our understanding of how forests respond to a variety of changes and to satisfy the society's demand on forests and its ecosystem services. A large variety of Forest Landscape Models exist, with a wide spectrum of algorithms, various selections of ecological processes they simulate, and the spatial and temporal scale they utilize, so that any researcher may find a model that fits one's use. However, it is important to properly understand the properties of such models so that the right model is used and the results are aptly interpreted. In this study, we describe and characterize the various Forest Landscape Models based on their historical roots, lineages, and development, ecological characteristics, and computational aspects, and discuss how they can be classified and what limits should be recognized to assist in model selection and utilization.