• Title/Summary/Keyword: ECG blood pressure

Search Result 118, Processing Time 0.024 seconds

Development of Blood Pressure Estimation Methods Using The PPG and ECG Sensors (PPG 및 ECG 센서를 이용한 혈압추정 기법 개발)

  • Park, Hyun-Moon;Lee, Jung-Chul;Hwang, Tae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1257-1264
    • /
    • 2019
  • The traditional cuff-based method for BP(Blood Pressure) measurement is not suitable for continuous real-time BP measurement techniques. For this reason, the previous studies estimated various blood pressures by fusion with the electrocardiography (ECG) and photoplethysmogram (PPG) sensor signals. However, conventional techniques based on PPG bio-sensing measurement face many challenging issues such as noisy supply fluctuation, small pulsation, and drifting non-pulsatile. This paper proposed a novel BP estimation methods using PPG and ECG sensors, which can be derived from the relationship between PPG and ECG using PTT(Pulse Transit Time) and PWV(Pulse Wave Velocity). Unlike conventional height ratio features, which are extracted on the basis of the peaks in the PPG and ECG waveform. The proposed method can be reliably obtained even if there are missing peaks among the sensed PPG signal. The increased reliability comes from periodical estimation of the peak-to-peak interval time using ECG and PPG. After 250,000 times trials of the blood pressure measurement, the proposed estimation technique was verified with the accuracy of ±28.5% error, compared to a commercialized BP device.

Design and Implementation of Mobile Continuous Blood Pressure Measurement System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 모바일 연속 혈압 측정 시스템의 설계 및 구현)

  • Kim, Seong-Woo;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1469-1476
    • /
    • 2022
  • Recently, many researches have been conducted to estimate blood pressure using ECG(Electrocardiogram) and PPG(Photoplentysmography) signals. In this paper, we designed and implemented a mobile system to monitor blood pressure in real time by using 1-D convolutional neural networks. The proposed model consists of deep 11 layers which can learn to extract various features of ECG and PPG signals. The simulation results show that the more the number of convolutional kernels the learned neural network has, the more detailed characteristics of ECG and PPG signals resulted in better performance with reduced mean square error compared to linear regression model. With receiving measurement signals from wearable ECG and PPG sensor devices attached to the body, the developed system receives measurement data transmitted through Bluetooth communication from the devices, estimates systolic and diastolic blood pressure values using a learned model and displays its graph in real time.

Cuffless Blood Pressure Estimation Based on a Convolutional Neural Network using PPG and ECG Signals for Portable or Wearable Blood Pressure Devices (휴대용 및 웨어러블 측정기를 위한 ECG와 PPG 신호를 활용한 합성곱 신경망 알고리즘 기반의 비가압식 혈압 추정 방법)

  • Cho, Jinwoo;Choi, Ahyoung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, we propose an algorithm for estimating blood pressure using ECG (Electrocardiogram) and PPG (Photoplethysmography) signals. To estimate the BP (Blood pressure), we generate a periodic input signal, remove the noise according to the differential and threshold methods, and then estimate the systolic and diastolic blood pressures based on the convolutional neural network. We used 49 patient data of 3.1GB in the MIMIC database. As a result, it was found that the prediction error (RMSE) of systolic BP was 5.80mmHg, and the prediction error of diastolic BP was 2.78mmHg. This result confirms that the performance of class A is satisfied with the existing BP monitor evaluation method proposed by the British High Blood Pressure Association.

Development of continuous blood pressure measurement system using ECG and PPG (ECG와 PPG를 이용한 실시간 연속 혈압 측정 시스템)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Nam, Ki-Chang
    • Science of Emotion and Sensibility
    • /
    • v.11 no.2
    • /
    • pp.235-244
    • /
    • 2008
  • This study is to develop automatic extraction system of continuous blood pressure using ECG (Electrocardiogram) and PPG(Photoplethysmography) for u-health care technology. PTT (Pulse Transit Time) was determined from peak difference between ECG and PPG and its inverse made to get blood pressure. Since the peaks were vulnerable to be contaminated from noise and variation of amplitude, this study developed the adaptive algorithm for peak calculation in any noise condition. The developed method of the adaptive peak calculation was proven to make the standard deviations of PPT decrease to 28% and the detection of noise increase to 18%. Also, the correlation model such as blood pressure = -0.044 $\cdot$ PTT + 133.592 has successfully been determined for predicting the continuous pressure measured without using cuff but with using PPG and ECG, only.

  • PDF

Design and Implementation of Real-time Blood Pressure Measuring System using Smartphone (스마트폰을 이용한 실시간 혈압측정 시스템의 설계 및 구현)

  • Gil, Yeongjoon;Lee, Jungtae
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.192-214
    • /
    • 2015
  • Blood pressure may be measured using physiological signals, such as ECG, PTT, and $SpO_2$. In this study, we designed and implemented a portable real-time blood pressure measuring system, which can access the Internet simultaneously using the IPv4 / IPv6 protocol. In addition, we presented a model for the calculation of systolic and diastolic blood pressure in a real-time environment. Through clinical experiments on 28 subjects, the blood pressure measuring system was shown to satisfy the requirements of Grade B level of the BHS (British Hypertension Society) certification.

Development of Feature Points Detection Algorithm for Measuring of Pulse Wave Velocity (맥파 전달 속도(PWV) 측정을 위한 특징점 검출 알고리즘 개발)

  • Choi, Jung-Hyeon;Cho, Wook-Hyun;Park, Jun-Ho;Kim, Nam-Hoon;Seong, Hyang-Sook;Cho, Jong-Man
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.343-350
    • /
    • 2011
  • The compliance and stiffness of artery are closely related with disease of arteries. Pulse wave velocity(PWV) in the blood vessel is a basic and common parameter in the hemodynamics of blood pressure and blood flow wave traveling in arteries because the PWV is affected directly by the conditions of blood vessels. However, there is no standardized method to measure the PWV and it is difficult to measure. The conventional PWV measurement has being done by manual calculation of the pulse wave transmission time between coronary arterial proximal and distal points on a strip chart on which the pulse wave and ECG signal are recorded. In this study, a pressure sensor consisting of strain gauges is used to measure the blood pressure of arteries in invasive method and regular ECG electrodes are used to record the ECG signal. The R-peak point of ECG is extracted by using a reference level and time windowing technique and the ascending starting point of blood pressure is determined by using differentiation of the blood pressure signal and time windowing technique. The algorithm proposed in this study, which can measure PWV automatically, shows robust and good results in the extraction of feature points and calculation of PWV.

Continuous Blood Pressure Monitoring using Pulse Wave Transit Time

  • Jeong, Gu-Young;Yu, Kee-Ho;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.834-837
    • /
    • 2005
  • In this paper, we describe the method of non-invasive blood pressure measurement using pulse wave transit time(PWTT). PWTT is a new parameter involved with a vascular that can indicate the change of BP. PWTT is measured by continuous monitoring of ECG and pulse wave. No additional sensors or modules are required. In many cases, the change of PWTT correlates with the change of BP. We measure pulse wave using the photo plethysmograph(PPG) sensor in an earlobe and we measure ECG using the ECG monitoring device our made in the chest. The measurement device for detecting pulse wave consists of infrared LED for transmitted light illumination, pin photodiode as light detector, amplifier and filter. We composed 0.5Hz high pass, 60Hz notch and 10Hz low pass filter. ECG measurement device consists of multiplexer, amplifier, filter, micro-controller and RF module. After amplification and filtering, ECG signal and pulse wave is fed through micro-controller. We performed the initial work towards the development of ambulatory BP monitoring system using PWTT. An earlobe is suitable place to measure PPG signal without the restraint in daily work. From the results, we can know that the dependence of PWTT on BP is almost linear and it is possible to monitoring an individual BP continuously after the individual calibration.

  • PDF

The Development of Pc Based EGG-NIBP Patient Monitor (PC 기반의 심전도-비관혈식 혈압 환자감시장치의 개발)

  • 김남현;김경하;주기춘;라상원;송광석;한민수;김성민;이건기;최태영
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.461-469
    • /
    • 1999
  • In this paper, an ECG-NIBP patient monitor is designed. This is an essential equipment to measure and monitor patient's physical condition - electrocardiogram(ECG) wave, heart rate(HR), and noninvasive blood pressure(NIBP) - in ICU, CCU, and operating room. The ECG is an electrical waveform produced by relaxation and contraction of the cardiac muscle. Most physicians diagnose patient's cardiac states from ECG pattern. A blood pressure is one of the clinical indexes measured in a emergency room or operating room. In this paper, the blood pressure is measured in artery by using the nonivasive oscillometric method. The developed patient monitor was inspected and compared with other instruments in operating rooms. The results were 1bpm of maximum difference in the heart rate, 15mmHg in the systolic pressure, 16mmHg in the diastolic pressure, and 25mmHg in the mean blood pressure. But the total results were 0.15bpm of the mean difference in the heart rate, 5mmHg in the systolic pressure, 10mmHg in the diastolic pressure, and 9mmHg in the mean blood pressure. The designed ECG-NIBP patient monitor can measure the ECG wave, HR, and BP. And the multi-tasking module of pulse oximetry . respiration . temperature monitor will be added in the near future.

  • PDF

Non-intrusive measurement of pulse arrival time and Estimation of Systolic Blood Pressure (무구속적 맥파 전달 시간의 측정을 통한 혈압 추정)

  • Chee, Young-Joon;Park, Kwang-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.489-492
    • /
    • 2005
  • Even though the blood pressure is one of the most widely used index for the healthcare monitoring of hypertensive and normotensive persons, there is no non-intrusive measurement method which is commercialized until now. Pulse Arrival Time (PAT) is known that it has close relation with the systolic blood pressure (SBP) and arterial stiffness. In this study, SBP estimation methods by non-intrusive measurement of PAT are suggested. For the unconstrained measurement of PAT, the first method used the electrically non contact electrocardiogram (ENC-ECG) technique and the reflective type of Photoplethysmography (PPG) sensor on the computer mouse. In the second method, ENC-ECG and the air pressure sensor in the seat cushion on a chair were measured. The third method used ECG electrodes and PPG sensors on the toilet seat cover. The validation and regression analysis of the relationship of PAT and SBP are summarized. These methods have considerable errors to be used for all people. But these can be applied for each subject after the parameter customization within acceptable error. So, it is feasible for suggested methods to be used for monitoring of SBP in daily life in non-intrusive way when there is personal identification system of each subject.

  • PDF

Development of ECG-NIBP Patient Monitoring System (ECG-NIBP 환자감시장치 개발)

  • Kim, N.H.;Shin, W.H.;Lee, G.K.;Ra, S.W.;Kim, G.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.315-318
    • /
    • 1997
  • The ECG-NIBP patient monitor consist of Noninvasive Blood Pressure(NIBP) module that have micro controller inside. This module transfer data by serial communication to the main processor. This system apply the fuzzy inflating method to reduce the blood pressure measuring time, and moving artifact removing algorithm, several parameters used or more accurate measurement. The ECG monitor use the Digital Signal Processor(DSP) or digital filtering, peak detection, heart rate calculation. This system also offer convenient user interface by rotary key, menu bar. With 7" CRT display, auxiliary TFT LCD display adapted to display information on wide screen.

  • PDF