DOI QR코드

DOI QR Code

Design and Implementation of Mobile Continuous Blood Pressure Measurement System Based on 1-D Convolutional Neural Networks

1차원 합성곱 신경망에 기반한 모바일 연속 혈압 측정 시스템의 설계 및 구현

  • Received : 2022.08.31
  • Accepted : 2022.10.03
  • Published : 2022.10.31

Abstract

Recently, many researches have been conducted to estimate blood pressure using ECG(Electrocardiogram) and PPG(Photoplentysmography) signals. In this paper, we designed and implemented a mobile system to monitor blood pressure in real time by using 1-D convolutional neural networks. The proposed model consists of deep 11 layers which can learn to extract various features of ECG and PPG signals. The simulation results show that the more the number of convolutional kernels the learned neural network has, the more detailed characteristics of ECG and PPG signals resulted in better performance with reduced mean square error compared to linear regression model. With receiving measurement signals from wearable ECG and PPG sensor devices attached to the body, the developed system receives measurement data transmitted through Bluetooth communication from the devices, estimates systolic and diastolic blood pressure values using a learned model and displays its graph in real time.

최근 심전도 (ECG) 및 광전용맥파 (PPG) 신호를 사용하여 혈압을 추정하는 많은 연구가 이루어지고 있다. 본 논문에서는 1차원 합성곱 신경망을 사용하여 실시간으로 혈압을 추정하고 모니터링 할 수 있는 모바일 시스템을 설계하고 구현하였다. 제안하는 신경망 알고리즘은 ECG 및 PPG 신호의 다양한 특징을 세밀하게 추출하도록 11개의 계층으로 구성하고 매개변수를 최적화하도록 설계되었다. 모의실험 결과는 학습한 신경망의 합성곱 커널의 개수가 많을수록 ECG 및 PPG 신호의 특성을 더 잘 나타내기 때문에 선형 회귀 모델보다 평균 제곱 오차가 적어져 더 좋은 성능을 나타내는 것으로 분석되었다. 본 연구에서 개발된 모바일 시스템은 몸에 부착된 ECG 및 PPG 센서 장치로부터 블루투스 통신으로 전송된 측정 신호를 입력받고 실시간으로 학습된 모델로 수축기 및 이완기 혈압 수치를 추정하고 그래프로 표시하게 된다.

Keywords

Acknowledgement

This Work was supported by Dong-eui University Foundation Grant(2021).

References

  1. J. H. Kim, M. C. Whang, and K. C. Nam, "Development of Continuous Blood Pressure Measurement System Using ECG and PPG," Science of Emotion and Sensibility, vol. 11, no. 2, pp. 235-244, Jun. 2008.
  2. M. H. Chowdhury, M. N. I. Shuzan, M. E. H. Chowdhury, Z. B. Mahbub, M. M. Uddin, A. Khandakar, and M. B. I. Reaz, "Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques," Sensors, vol. 20, no. 11, pp. 3127, Jun. 2020. https://doi.org/10.3390/s20113127
  3. M. Kachuee, M. M. Kiani, H. Mohammadzade, M. Shabany, "Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time," in Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, pp. 1006-1009, May. 2015.
  4. S. W. Kim, I. J. Kim, and S.C. Shin, "Design of Arrhythmia Classification System Based on 1-D Convolutional Neural Networks," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 1, pp. 399-406, Jan. 2020.
  5. J. W. Cho and A. Y. Choi, "Cuffless Blood Pressure Estimation Based on a Convolutional Neural Network using PPG and ECG Signals for Portable or Wearable Blood Pressure Devices," Journal of the Korea Industrial Information Systems Research, vol. 25, no. 3, pp. 1-10, Jun. 2020. https://doi.org/10.9723/JKSIIS.2020.25.3.001
  6. Y. J. Gil and J. T. Lee, "Design and Implementation of Real-time Blood Pressure Measuring System using Smartphone," KIISE Transactions on Computing Practices, vol. 21, no. 3, pp. 192-214, Mar. 2015. https://doi.org/10.5626/KTCP.2015.21.3.192
  7. J. H. Park, S.M. Yang, J. J. Sohn, J. N. Lee, S. R. Lee, Y. S. Ku, and H. C. Kim, "Cuffless and Continuous Blood Pressure Monitoring using a Single Chest-Worn Device," IEEE Access, vol. 7, pp. 135231-135246, Sep. 2019. https://doi.org/10.1109/ACCESS.2019.2942184
  8. S. W. Kim and S. C. Shin, "Realization of a Wearable ECG Monitoring System for Mobile Healthcare," in Proceedings of the KIPS Fall Conference 2018, Busan, Korea, pp. 453-456, 2018.