• Title/Summary/Keyword: ECG Simulator

Search Result 27, Processing Time 0.028 seconds

ECG simulator design with Spartan-3 FPGA (Spartan-3 FPGA를 이용한 ECG 시뮬레이터 설계)

  • Woo, Sung-hee;Lee, Won-pyo;Ryu, Geun-teak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.834-837
    • /
    • 2015
  • In this paper, we designed the FPGA hardware-based real-time ECG simulator, which generates an analog ECG signal within the range of 0 to 5 volts and described function. The ECG signal generated by the simulator can be applied to laboratory tests, the medical device, and the calibration study in various ways. ECG signals generated by simulator are obtained with conventional 24bit quantization to generate the signal data, and they are sampled and quantized to 1kHz of the 8-bit resolution when used as actual data. The proposed simulator is implemented using xilix Spartan-3 and data are transmitted through an RS-232 between the PC and the FPGA simulator. The transmitted data are stored in the memory and the stored data are printed out with the analog ECG signal through DAC (0808). It can also control the heart rate (HR) via the two buttons level UP-DOWN. We used existing ECG input rating for the evaluation of the designed system and evaluated differential circuit for obtaining QRS waveform and the output signal. We finally could obtained proper the result.

  • PDF

An Implementation of Discrete Mathematical Model for ECG waveform

  • Yimman, Surapun;Deeudom, Mongkon;Ittisariyanon, Jirawat;Junnapiya, Somyot;Dejhan, Kobchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.852-856
    • /
    • 2005
  • This paper proposes a new design of the ECG simulator with high resolution by using small amount of memories based on discrete least square estimation equations instead of reading the stored data inside the look-up table. The experimental results have shown that the ECG simulator using discrete least square estimation equations can display the bipolar limb leads ECG signals with low PRD (percent root-mean-square difference) while taking the less amount of memories than the previous method which used the look-up table to store ECG data for ECG simulation.

  • PDF

Development of Standard ECG Simulator for 15-Lead ECG Monitor (15-리드 심전계용 표준 시뮬레이터의 개발)

  • Kang, Yu Min;Lee, Jin Hong;Choi, Seong Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.391-395
    • /
    • 2015
  • A 15-Lead ECG has been developed to diagnose posterior wall diseases of the heart that a 12-Lead ECG cannot diagnose. However, 15-Lead ECG data for developing heart-diseases-detecting algorithm are limited, and previous ECG simulators cannot predict the ECG waveform according to the changes in electrode. To solve these problems, the lumped parameter model (LPM), which divides the heart into 15 sections with varying electrical capacitance and electrical resistance. To imitate the electrical conduction in the heart, each node was connected to a current source and delivered the specific current considering the positions and time delay. The purpose of this study is to acquire the waveform that can be used in an ECG by delivering the specific current to LPM.

Experimental study on real ship-simulator for ship navigator's mental workload (실선-시뮬레이터 환경에서 항해사 정신적 작업부하에 대한 실험연구)

  • Oh, Seung-bin;Jang, Jun-Hyuk;Kim, Hongtae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.251-253
    • /
    • 2014
  • 본 연구는 시뮬레이터에서의 mental workload 측정 및 평가를 위한 기초연구로서 실선과 시뮬레이터에서의 항해사 생체신호 변화를 비교하고자 한다.ECG, PVT, NASA-TLX를 이용하여 정신적 작업부하를 평가하였다. 운항구간은 부산항 입항과 출항으로 하였다. ECG와 NASA-TLX 분석 결과, 실선과 시뮬레이터 간에 유사한 경향을 보였다. 추후 동일한 상황에 대한 누적된 데이터 및 다양한 피실험자를 대상으로 실험을 수행하여야 할 것이다. 본 연구 결과를 바탕으로 시뮬레이터를 활용한 다양한 환경에서의 workload 실험이 가능할 것이다.

  • PDF

Real Time ECG Monitoring Through a Wearable Smart T-shirt

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.16-19
    • /
    • 2015
  • A wearable sensing ECG T-shirt for ubiquitous vital signs sensing is proposed. The sensor system consists of a signal processing board and capacitive sensing electrodes which together enable measurement of an electrocardiogram (ECG) on the human chest with minimal discomfort. The capacitive sensing method was employed to prevent direct ECG measurement on the skin and also to provide maximum convenience to the user. Also, low power integrated circuits (ICs) and passive electrodes were employed in this research to reduce the power consumption of the entire system. Small flexible electrodes were placed into cotton pockets and affixed to the interior of a worn tight NIKE Pro combat T-shirt. Appropriate signal conditioning and processing were implemented to remove motion artifacts. The entire system was portable and consumed low power compared to conventional ECG devices. The ECG signal obtained from a 24 yr. old male was comparable to that of an ECG simulator.

The Evaluation of Driver's Physiology Signal and Sensibility according to the Change of Speed and the Gap of Platoon on AHS (AHS에서 차량군의 속도와 거리 변화에 따른 운전자의 생체신호와 감성 평가)

  • Jeon, Yong-Uk;Park, Beom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.15-28
    • /
    • 2003
  • The one of the most important factors is the platoon design on developing AH3(Advanced Highway System), as it is related to traffic efficiency and drivers' safety. This study was evaluated that how much speed is comfortable for drivers and how long distance is appropriate for vehicular gap of platoon by measuring drivers' physiology signal and sensibility. A fixed-based AHS simulator was developed by using a real vehicle cockpit and the restructured part of Korean highway for human factors evaluation. The EEG(electroencephalogram), ECG (electrocardiogram) and GSR(Galvanic Skin Response) were measured for obtaining drivers' physiology signal according to the change of speed and gap. The brain wave(${\alpha},\;{\beta},\;{\delta},\;{\theta}$) by EEG, the response of the autonomic nervous system. the sympathetic and parasympathetic nervous system, by ECG, and relax-arousal situation by GSR were analyzed. The SD(Semantic Differential) method was also applied to evaluate drivers' sensibility by 5-grade evaluation scale with 96 adjectives. SSQ(Simulator Sickness Questionnaire) was used to measure the simulator sickness of pre and post driving, two times. As the results, drivers were comfortable with 120km/h speed of platoon and lam to 15m vehicular distance. The results of this study may differ from the adaption of the reality because of many parameters. However, the purpose of this study is show to significant results of the drivers' safety and the acceptability of human factors evaluation.

A Study on Driver's Physiological Response in Train Simulator (열차 시뮬레이터 조작 시 운전자의 생체신호 변화에 대한 연구)

  • Jang, Hye-Yoen;Jang, Jae-Ho;Kim, Tea-Sik;Han, Chang-Soo;Han, Jung-Soo;Ahn, Jae-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.129-135
    • /
    • 2006
  • he purpose of this study is to measure bio-signal to investigate the driver's physiological response change under real situation using train simulator. The train simulator used in this study is KTX model and according to changes of driving situation, The bio-signal controlled by autonomic nervous system, such as GSR(Galvanic Skin Response), SpO2(Saturation percent O2), HR(Heart Rate), ECG(Electrocardiograph), EEG(Electroencephagram) and movement and response of eye were measured. Statistically significant difference in bio-signal data and eye movement activity pattern were investigated under several different driving speeds using analysis of variance (p<0.05). The GSR and HR value measured in average and mission speed operation is higher than in high-speed operation. β wave of EEG in average speed operation become more activated than in high speed operation. In accordance with a characteristic of rail vehicle, movement and response of eye in high-speed operation requiring relatively simple maneuver become less activated than in either average or mission speed operations. Conclusively, due to more careful driving controls in average and mission speed operation are required than in high-speed operation, level of mental and physical stresses of train driver was increased and observed through changes of bio-signal and eye movement measured in this study.

Development of a Driving Simulator for Telematics Human-Machine Interface Studies (텔레매틱스 HMI 연구를 위한 드라이빙 시뮬레이터의 개발)

  • Koo, Tae-Yun;Kim, Bae-Young;Shin, Hee-Jong;Son, Young-Tak;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.16-23
    • /
    • 2009
  • Driving simulators are useful tools not only to test the components of future cars but also to evaluate the telematics service and HMI (Human-Machine Interface). However driving simulators cannot be implemented to test and evaluate the telematics service system because the GPS (Global Positioning System) which contains basic functional support for the telematics module do not work in the VR (virtual reality) environment. This paper presents a method to implement telematics service to a driving simulator by developing the GPS simulator which is able to emulate GPS satellite signals consist of NMEA-0183 protocol and RS232C communication standards. It is expected that the driving simulator with the GPS simulator can be used to study HMI and human-factor evaluations of the commercial telematics system to realize the HiLES (Human-in-the-Loop Evaluation System).

Development of Real-time QRS-complex Detection Algorithm for Portable ECG Measurement Device (휴대용 심전도 측정장치를 위한 실시간 QRS-complex 검출 알고리즘 개발)

  • An, Hwi;Shim, Hyoung-Jin;Park, Jae-Soon;Lhm, Jong-Tae;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.280-289
    • /
    • 2022
  • In this paper, we present a QRS-complex detection algorithm to calculate an accurate heartbeat and clearly recognize irregular rhythm from ECG signals. The conventional Pan-Tompkins algorithm brings false QRS detection in the derivative when QRS and noise signals have similar instant variation. The proposed algorithm uses amplitude differences in 7 adjacent samples to detect QRS-complex which has the highest amplitude variation. The calculated amplitude is cubed to dominate QRS-complex and the moving average method is applied to diminish the noise signal's amplitude. Finally, a decision rule with a threshold value is applied to detect accurate QRS-complex. The calculated signals with Pan-Tompkins and proposed algorithms were compared by signal-to-noise ratio to evaluate the noise reduction degree. QRS-complex detection performance was confirmed by sensitivity and the positive predictive value(PPV). Normal ECG, muscle noise ECG, PVC, and atrial fibrillation signals were achieved which were measured from an ECG simulator. The signal-to-noise ratio difference between Pan-Tompkins and the proposed algorithm were 8.1, 8.5, 9.6, and 4.7, respectively. All ratio of the proposed algorithm is higher than the Pan-Tompkins values. It indicates that the proposed algorithm is more robust to noise than the Pan-Tompkins algorithm. The Pan-Tompkins algorithm and the proposed algorithm showed similar sensitivity and PPV at most waveforms. However, with a noisy atrial fibrillation signal, the PPV for QRS-complex has different values, 42% for the Pan-Tompkins algorithm and 100% for the proposed algorithm. It means that the proposed algorithm has superiority for QRS-complex detection in a noisy environment.

A Study on the Development of a Validation Method for Driving Simulator - Recognition of the Distance & Turning Angle - (Driving Simulator 평가 수법 개발에 관한 연구 - 거리 및 선회각도 인지 -)

  • Oh, S.G.;Son, K.H.;Jeong, D.S.;Lim, J.J.;Kim, N.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.135-136
    • /
    • 1998
  • The purpose of this study is to develope a validation method for driving simulator. Physiological responses such as EOG, ECG, and driver's behaviour were measured by using actual vehicles. The characteristics of the recognition of the acceleration by the human are investigated. These results showed that physiological responses was changed by the driving environment. Subject recognized that he drove more than real distance and turning angle.

  • PDF