• Title/Summary/Keyword: ECG Signal

Search Result 564, Processing Time 0.027 seconds

Comparison of Characteristics of P-Wave Detection in ECG with Wireless Patch Electrodes

  • Cho, Young Chang;Kim, Min Soo;Yoon, Jeong Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • P-wave characteristic in the human electrocardiogram (ECG) is important in the diagnosis of atrial conduction pathology. In this paper, we measured an ECG signal from patient with cardiovascular disease using one lead ECG electrode system which is based on the wireless cardiac monitoring system. And we detected a P-wave in ECG signal using the complex-valued continuous wavelet transforms (CWT) according to two kinds of patch type electrodes such as an existing narrow patch type electrode and the improved wide patch type electrode presented in this paper. Also, we compared the characteristics in detecting the P-wave in terms of the magnitude and the width of P-waves. From the results of comparison we found that the width and the magnitude of P-wave detected using the wide patch type electrode is improved to be interpreted easier compared to those using the narrow patch type electrode. Furthermore, we have also proven that the complex-valued CWT can be used as a robust detector for P-wave in ECG signal analysis.

Real Time ECG Monitoring Through a Wearable Smart T-shirt

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.16-19
    • /
    • 2015
  • A wearable sensing ECG T-shirt for ubiquitous vital signs sensing is proposed. The sensor system consists of a signal processing board and capacitive sensing electrodes which together enable measurement of an electrocardiogram (ECG) on the human chest with minimal discomfort. The capacitive sensing method was employed to prevent direct ECG measurement on the skin and also to provide maximum convenience to the user. Also, low power integrated circuits (ICs) and passive electrodes were employed in this research to reduce the power consumption of the entire system. Small flexible electrodes were placed into cotton pockets and affixed to the interior of a worn tight NIKE Pro combat T-shirt. Appropriate signal conditioning and processing were implemented to remove motion artifacts. The entire system was portable and consumed low power compared to conventional ECG devices. The ECG signal obtained from a 24 yr. old male was comparable to that of an ECG simulator.

A Combined QRS-complex and P-wave Detection in ECG Signal for Ubiquitous Healthcare System

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.98-103
    • /
    • 2007
  • Long term Electrocardiogram (ECG) [1] analysis plays a key role in heart disease analysis. A combined detection of QRS-complex and P-wave in ECG signal for ubiquitous healthcare system was designed and implemented which can be used as an advanced warning device. The ECG features are used to detect life-threating arrhythmias, with an emphasis on the software for analyzing QRS complex and P-wave in wireless ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server will transfer alarm conditions to a doctor's Personal Digital Assistant (PDA). Doctor can diagnose the patients who have survived from cardiac arrhythmia diseases.

Multi-modal Authentication Using Score Fusion of ECG and Fingerprints

  • Kwon, Young-Bin;Kim, Jason
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.2
    • /
    • pp.132-146
    • /
    • 2020
  • Biometric technologies have become widely available in many different fields. However, biometric technologies using existing physical features such as fingerprints, facial features, irises, and veins must consider forgery and alterations targeting them through fraudulent physical characteristics such as fake fingerprints. Thus, a trend toward next-generation biometric technologies using behavioral biometrics of a living person, such as bio-signals and walking characteristics, has emerged. Accordingly, in this study, we developed a bio-signal authentication algorithm using electrocardiogram (ECG) signals, which are the most uniquely identifiable form of bio-signal available. When using ECG signals with our system, the personal identification and authentication accuracy are approximately 90% during a state of rest. When using fingerprints alone, the equal error rate (EER) is 0.243%; however, when fusing the scores of both the ECG signal and fingerprints, the EER decreases to 0.113% on average. In addition, as a function of detecting a presentation attack on a mobile phone, a method for rejecting a transaction when a fake fingerprint is applied was successfully implemented.

An Algorithm for Pattern Classification of ECG Signals Using Frame Knowledge Representation Technique (게임 지식 표현 기법을 이용한 심전도 신호의 패턴해석 알고리즘에 관한 연구)

  • 신건수;이병채;정희교;이명호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.433-441
    • /
    • 1992
  • This paper describes an algorithm that can efficiently analyze the ECG signal using frame knowledge representation technique. Input to the analysis process is a set of significant points which have been extracted from an original sampled signal(lead II) by the syntactic peak recognition algorithm. The hierarchical property of ECG signal is represented by hierarchical AND/OR graph. The semantic information and constraints of the ECG signal are desctibed by frame. As the control mechanism for labeling points, the search mechanism with the mixed paradigms of data-driven and model driven hypothesis formation, scoring function, hypothesis modification network and instance inheritance are used. We used the CSE database in order to evaluate the performance of the proposed algorithm.

An algorithm for pattern recognition of multichannel ECG signals using AI (AI기법을 이용한 멀티채널 심전도신호의 패턴인식 알고리즘)

  • 신건수;이병채;황선철;이명호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.575-579
    • /
    • 1990
  • This paper describes an algorithm that can efficiently analyze the multichannel ECG signal using the frame. The input is a set of significant features (points) which have been extracted from an original sampled signal by using the split-and-merge algorithm. A signal from each channel can be hierarchical ADN/OR graph on the basis of the priori knowledge for ECG signal. The search mechanisms with some heuristics and the mixed paradigms of data-driven hypothesis formation are used as the major control mechanisms. The mutual relations among features are also considered by evaluating a score based on the relational spectrum. For recognition of morphologies corresponding to OR nodes, an hypothesis modification strategy is used. Other techniques such as instance, priority update of prototypes, and template matching facility are also used. This algorithm exactly recognized the primary points and supporting points from the multichannel ECG signals.

  • PDF

Adaptive Signal Processing Methods for ECG Signal Analysis using EMG Signal Analysis (근전도 신호를 이용한 심전도 신호의 적응신호처리 방법)

  • Oh, Kwang-Seok;Park, Jun-Sik;Lee, Choon-Young;Lee, Sang-Ryong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.889-890
    • /
    • 2006
  • This paper pertains to introducing the design of adaptive filters for the cancellation of muscle noise among several types of noise sources from the ECG signal. We used EMG signals measured along with ECG at the same time to use it as the reference input to the adaptive filter for the experiments. PSD results showed that the statistical characteristics of ECG are closely correlated with those of EMG.

  • PDF

Design of Deep De-nosing Network for Power Line Artifact in Electrocardiogram (심전도 신호의 전력선 잡음 제거를 위한 Deep De-noising Network 설계)

  • Kwon, Oyun;Lee, JeeEun;Kwon, Jun Hwan;Lim, Seong Jun;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.402-411
    • /
    • 2020
  • Power line noise in electrocardiogram signals makes it difficult to diagnose cardiovascular disease. ECG signals without power line noise are needed to increase the accuracy of diagnosis. In this paper, it is proposed DNN(Deep Neural Network) model to remove the power line noise in ECG. The proposed model is learned with noisy ECG, and clean ECG. Performance of the proposed model were performed in various environments(varying amplitude, frequency change, real-time amplitude change). The evaluation used signal-to-noise ratio and root mean square error (RMSE). The difference in evaluation metrics between the noisy ECG signals and the de-noising ECG signals can demonstrate effectiveness as the de-noising model. The proposed DNN model learning result was a decrease in RMSE 0.0224dB and a increase in signal-to-noise ratio 1.048dB. The results performed in various environments showed a decrease in RMSE 1.7672dB and a increase in signal-to-noise ratio 15.1879dB in amplitude changes, a decrease in RMSE 0.0823dB and a increase in signal-to-noise ratio 4.9287dB in frequency changes. Finally, in real-time amplitude changes, RMSE was decreased 0.3886dB and signal-to-noise ratio was increased 11.4536dB. Thus, it was shown that the proposed DNN model can de-noise power line noise in ECG.

Design of Arrhythmia Classification System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 부정맥 분류 시스템의 설계)

  • Kim, Seong-Woo;Kim, In-Ju;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Recently, many researches have been actively to diagnose symptoms of heart disease using ECG signal, which is an electrical signal measuring heart status. In particular, the electrocardiogram signal can be used to monitor and diagnose arrhythmias that indicates an abnormal heart status. In this paper, we proposed 1-D convolutional neural network for arrhythmias classification systems. The proposed model consists of deep 11 layers which can learn to extract features and classify 5 types of arrhythmias. The simulation results over MIT-BIH arrhythmia database show that the learned neural network has more than 99% classification accuracy. It is analyzed that the more the number of convolutional kernels the network has, the more detailed characteristics of ECG signal resulted in better performance. Moreover, we implemented a practical application based on the proposed one to classify arrythmias in real-time.

Wearable Approach of ECG Monitoring System for Wireless Tele-Home Care Application

  • Kew, Hsein-Ping;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.337-340
    • /
    • 2009
  • Wireless tele-home-care application gives new possibilities for ECG (electrocardiogram) monitoring system with wearable biomedical sensors. Thus, continuously development of high convenient ECG monitoring system for high-risk cardiac patients is essential. This paper describes to monitor a person's ECG using wearable approach. A wearable belt-type ECG electrode with integrated electronics has been developed and has proven long-term robustness and monitoring of all electrical components. The measured ECG signal is transmitted via an ultra low power consumption wireless sensor node. ECG signals carry a lot clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed thus it bring errors due to motion artifacts and signal size changes. Variable threshold method is used to detect the R-peak which is more accurate and efficient. In order to evaluate the performance analysis, R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research. This concept able to allow patient to follow up critical patients from their home and early detecting rarely occurrences of cardiac arrhythmia.

  • PDF