산모의 흉부와 복부로부터 측정된 다채널 심전도에서 태아 심전도를 추출하는 새로운 알고리듬을 제안한다. 산모의 복부 심전도로부터 태아 심전도를 추출하기 위하여, 시간 영역에서 특이값 분해를 근간으로한 방법이 일반적으로 사용되었다. 그러나 이 방법은 산모와 태아의 심전도 벡터 방향이 서로 직교해야 하는 가정과 많은 연산량을 요구하는 단점이 있다. 제안한 알고리듬은 이산연현변환 영역에서 특이값 분해를 이용하여 이러한 단점을 극복한다. 적은 연산량으로 특이값 분해를 하기 위하여 이산여현변환 계수의 특성과 태아 심전도의 주파수 특성에 기초하여 고주파 수 성분에 해당하는 이산여현변환 계수를 제거하였다. 또한 산모와 태아의 심전도 벡터 방향에 의한 영향을 덜 받으면서 순수한 태아 심전도를 추출하기 위하여, 산모 복부 심전도에서 산모 심전도가 억압된 새로운 세 개의 채널을 만들고 이들을 다채널 심전도에 추가하였다. 모의 신호와 실제 신호를 이용하여 기존의 시간 영역에서 특이값 분해를 근간으로한 방법과 제안한 알고리듬의 성능을 비교하였다. 제안한 알고리듬은 기존 방법보다 적은 연산량으로 순수한 태아 심전도를 얻을 수 있음을 실험적으로 확인되었다.
ECG신호가 임상적으로 환자의 심장활동에 관련된 여러 정보를 의사에게 제공한다는 점에서 ECG 신호의 검출은 중요한 환자 진단방법의 하나이다. 특히 QRS복합파형, P파, T파 등의 위치와 각파 간의 간격에 의미있는 정보가 담겨져 있어 의공학 분야에서 ECG신호의 특징점 검출에 관련된 여러 연구들이 있어 왔다. 기존의 ECG신호의 특징점 검출 방법은 정상파형의 경우에는 만족할 만한 성능을 보여 주는데 반해 잡음이 혼입된 ECG신호로부터 정상 ECG신호를 분리해 내는데 있어 성능의 한계를 가진다. 본 논문에서는 최근 공학분야에서 그 활용 영역이 확대되고 있는 웨이브렛 변환 기법을 ECG신호의 특징점 검출과 잡음제거에 적용하여, 잡음이 혼입된 ECG신호의 특징점 검출과 정상 파형 복원을 수행하였다.
The objective of this research is to develop an automatic algorithm based on electrocardiogram (ECG) to estimate slow-wave sleep (SWS). An algorithm is based on 7 indices extracted from heart rate on ECG which simultaneously recorded with standard full night polysomnography from 31 subjects. Those 7 indices were then applied to independent component analysis to extract a feature that discriminates SWS and other sleep stages. Overall Cohen's kappa, accuracy, sensitivity and specificity of the algorithm to detect 30s epochs of SWS were 0.52, 0.87, 0.70 and 0.90, respectively. The automatic SWS detection algorithm could be useful combining with existing REM and wake estimation technique on unattended home-based sleep monitoring.
In this paper, an improved algorithm for the extraction of respiration signal from the electrocardiogram (ECG) is proposed. The whole system consists of two-lead electrocardiogram acquisition (lead Ⅰ and Ⅱ), baseline fluctuation elimination, R-wave detection, adjustment of sudden change in R-wave area using moving average, and optimal lead selection. In order to solve the problem of previous algorithms for the ECG-derived respiration (EDR) signal acquisition, we proposed a method for the optimal lead selection. An optimal EDR signal among the three EDR signals derived from each lead (and arctangent of their ratio) is selected by estimating the instantaneous frequency using the Hilbert transform, and then choosing the signal with minimum variation of the instantaneous frequency. The proposed algorithm was tested on 15 subjects, and we could obtain satisfactory respiration signals that shows high correlation (r>0.9) with the signal acquired from the chest-belt respiration sensor.
ECG신호가 임상적으로 환자의 심장활동에 관련된 여러 정보를 의사에게 제공한다는 점에서 ECG 신호의 검출은 중요한 환자 진단방법의 하나이다. 특히 QRS복합 파형, P파, T파 등의 위치와 각 파 간의 간격에 의미 있는 정보가 담겨져 있어 정확한 환자진단을 위해 의공학 분야에서 ECG신호의 잡음제거에 관련된 여러 연구들이 있어 왔다. 기존의 ECG신호의 잡음제거 방법은 특정한 단일 잡음이 혼입된 경우에는 만족할 만한 성능을 보여 주는데 반해 여러 형태의 복합잡음이 혼입된 ECG신호로부터 정상 ECG신호를 분리해 내는데는 성능의 한계를 가진다. 본 논문에서는 최근 공학분야에서 그 활용 영역이 확대되고 있는 웨이브렛 변환 기법을 ECG신호의 잡음제거에 적용하여, 잡음이 혼입된 ECG신호의 잡음제거를 통한 정상 파형 복원을 수행하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권9호
/
pp.2361-2376
/
2023
The electrocardiogram (ECG) signal is commonly used to screen and diagnose cardiovascular diseases. In recent years, deep neural networks have been regarded as an effective way for automatic ECG disease diagnosis. The convolutional neural network is widely used for ECG signal extraction because it can obtain different levels of information. However, most previous studies adopt single scale convolution filters to extract ECG signal features, ignoring the complementarity between ECG signal features of different scales. In the paper, we propose a dual-scale network with convolution filters of different sizes for 12-lead ECG classification. Our model can extract and fuse ECG signal features of different scales. In addition, different spatial and time periods of the feature map obtained from the 12-lead ECG may have different contributions to ECG classification. Therefore, we add a spatial-temporal attention to each scale sub-network to emphasize the representative local spatial and temporal features. Our approach is evaluated on PTB-XL dataset and achieves 0.9307, 0.8152, and 89.11 on macro-averaged ROC-AUC score, a maximum F1 score, and mean accuracy, respectively. The experiment results have proven that our approach outperforms the baselines.
We investigated the effects of pulsed magnetic fields (PMF) stimulus on electroencephalogram (EEG) alpha activity and heart rate variability (HRV) from electrocardiogram (ECG) measurements with various stimulus durations at acupoint PC9. The alpha activity in the EEG and the ratio of low frequency power and high frequency power (LHR) in the HRV, a reflection of sympathovagal activity, were increased and decreased, respectively, after PMF stimulus of 3 min. Our spectral analysis quantitatively proved that the changes in the EEG alpha activity were consistent with an autonomic function in the ECG. These findings suggest that appropriate PMF stimulus results in the same effect as that of acupuncture applied to the acupoint PC9, which is closely related to the parasympathetic activity of the autonomic nervous system.
The position and time interval of wave components of the electrocardiogram are used as important data for physician's diagnosis. In case of using the existing definition of the onset of the wave component of the electrocardiogram, they have some problems of defining the precise position of the isoelectric line, of defining the limit of the gradient accepted as the onset, and of the gradient being changed by noise. Therefore, in this paper all time intervals and positions of wave components needed for data of diagnosis were obtained correctly by turning point data reduction algorithm and linear regression intersection algorithm, and the viability of the method of intersecting lines was established in comparison to the four methods of calculating the PR interval.
본 논문에서는 일상생활 속에서 무자각적으로 생체신호를 측정하고 분석하여 감성을 평가할 수 있는 임베디드 시스템에 관하여 연구하였다. 지속적으로 변화하는 감성을 일관적이며 신뢰성이 높은 생리적인 방법으로 평가하기 위해 심전도(ECG:Electrocardiogram), 맥파(PPG:Photoplethysmogram)의 두 가지 생체신호를 측정하고, 무선전송(Bluetooth) 장치를 이용하여 측정한 생체신호를 실시간으로 노트북PC로 전송하여 분석하였다. 생체신호의 분석방법은 FFT(Fast Fourier Transform)과 전력스펙트럼밀도(Power Spectrum Density)를 이용한 주파수 분석방법으로 두 생체신호의 특정 주파수 대역이 가지는 자율신경계의 활성도의 비율을 분석하여 비교 연구하였다. 또한 보다 빠르고 정확한 감성을 평가하기 위하여 분석알고리즘의 연산을 최소화 하였으며 그래프를 이용한 분석결과의 시각화를 하였다. 본 논문에서는 무자각적인 생체신호 측정 시스템을 이용하여 다양한 상황에서 생체신호를 측정하고, 개발한 분석 알고리즘으로 분석한 결과의 차이를 연구하여 정확도 및 신뢰도를 기준으로 감성을 평가하기 위한 분석 시스템을 평가하였다.
심전도는 심장근육세포와 홍분세포들의 활동전위의 전파에 따른 전파에 의해 발생한다. 활동전위의 재분극상은 임상적 요인에 매우 민감하다. 따라서. 역심전도에 관한 본 논문에서는, 디지탈 신호 추정방법으로 심전도의 재분극상에서의 일정활동전위(uniform action potential)를 추정하는 방법을 연구하였다. 추정된 정상인의 활동전위는 임상적 자료와 비슷한 재분극상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.