• Title/Summary/Keyword: ECDM(electrochemical discharge machining)

Search Result 10, Processing Time 0.031 seconds

An Experimental Study on the Improvement of Microscopic Machinability of Glass using the Discharging Peak Control Techniques in the Electrochemical Discharge Machining Technologies

  • Chang, In-Bae;Kim, Nam-Hyeock;Kim, Byeong-Hee;Kim, Heon-Young
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.315-316
    • /
    • 2002
  • Electrochemical discharge machining is a very recent technique for non-conducting materials such as ceramics and glasses. ECDM is conducted in the NaOH solution and the cathode electrode is separated from the solution by $H_2$ gas bubble. Then the discharge is appeared and the non-conductive material is removed by spark and some chemical reactions. In the ECDM technology, the $H_2$ bubble control is the most important factor to stabilize the discharging condition. In this paper, we proposed the discharge peak monitoring/ discharging duty feedback algorithms for the discharge stabilization and the feasibility of this algorithm is verified by various pattern machining in the constant preload conditions for the cathode electrode.

  • PDF

An Experimental Study on the Improvement of Microscopic Machinability of Glass using the Discharging Peak Control Techniques in the Electrochemical Discharge Machining Technologies

  • Chang, In-Bae;Kim, Nam-Hyeock;Kim, Byeong-Hee;Kim, Heon-Young
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.95-100
    • /
    • 2002
  • Electrochemical discharge machining is a very recent technique for non-conducting materials such as ceramics and glasses. ECDM is conducted in the NaOH solution and the cathode electrode is separated from the solution by H$_2$ gas bubble. Then the discharge is appeared and the non-conductive material is removed by spark and some chemical reactions. In the ECDM technology, the H$_2$ bubble control is the most important factor to stabilize the discharging condition. In this paper we proposed the discharge peak monitoring/discharging duty feedback algorithms fur the discharge stabilization and the feasibility of this algorithm is verified by various pattern machining in the constant preload conditions for the cathode electrode.

The Experiment on the effect of variations of voltage frequency and duty r on the electrochemical discharge machining of Pyrex glass (전압 주파수와 파형 폭 변화에 따른 유리의 미세 전해 방전 가공 성능에 대한 실험)

  • Lee, Jung-Yong;Ahn, Yoo-Min;Ahn, Si-Hong;Park, Chi-Hyun;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3307-3309
    • /
    • 1999
  • Electrochemical discharge machining (ECDM) is a very recent technique in the fabrication of the micro-electro-mechanical system ( MEMS ) devices. This paper presents the experimental results of the machining of micro-holes on pyrex glass substrates by use of ECDM. Electrolyte is used with a KOH aqueous solution, cathode with copper, anode with platinum, and tool feed system is applied with gravity feed system. Already established experimental results were taken under the condition of constant voltage frequency. However in this paper, the effect of variation of the voltage frequency and duty ratio is considered. In this experiment, it is measured the ECDM performances with variation of the voltage frequency and duty ratio under the conditions of constant other machining variables. ECDM performances are described by the hole depth, and the top hole diameter.

  • PDF

Improvement of Hole Geometric Accuracy by Powder Mixed Electro-chemical Discharge Machining Process (Powder Mixed ECDM (Electro-Chemical Discharge Machining)을 이용한 미세구멍가공의 정밀도 개선)

  • 한민섭;민병권;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.42-45
    • /
    • 2004
  • Electrochemical discharge machining (ECDM) has been found to be suitable for the micro-hole machining of nonconductive materials such as ceramics or glass compared with existing conventional and also non-conventional machining methods. However this machining process has some problems such as low geometric accuracy and low machining efficiency due to the random spark generation at the end of the electrode. This paper proposes the methods to improve the geometric accuracy of micro-hole using powder mixed ECDM process. The experimental results show the effects of powder producing improved geometric accuracy of machined hole and decreased concentration of spark energy.

  • PDF

Fabrication of Copper Electrode Array and Test of Electrochemical Discharge Machining for Micro Machining of Glass (유리의 미세 가공을 위한 구리 전극군의 제작과 전기 화학 방전 가공 시험)

  • 정주명;심우영;정옥찬;양상식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.9
    • /
    • pp.488-493
    • /
    • 2004
  • In this paper, we present the fabrication of copper electrode array and test of electrochemical discharge machining(ECDM) for glass machining. An array of 72 Cu electrodes is used to machine Borofloat33 glass. The height and diameter of a Cu electrode are 400 $\mu\textrm{m}$ and 100 $\mu\textrm{m}$ respectively. It is fabricated by ICP-RIE, Au-Au thermo-compression bonding, and copper electroplating. Borofloat33 glass is machined by the fabricated copper electrode array in 60 seconds at 55 V. The surface roughness of the machined glass is measured and the machined glass is anodically bonded with silicon.

Improvement of Geometric Accuracy using Powder Mixed Electro-chemical Discharge Machining Process (전해액 내 혼합된 미세 전도성 입자를 이용한 전해 방전 가공의 형상 정밀도 향상)

  • Han M.S.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.366-369
    • /
    • 2005
  • Electrochemical discharge machining (ECDM) has been found to be potential fur the micro-machining of non-conductive materials such as ceramics or glass. However this machining process has its own inherent problem that the reproducibility is too low to get the available geometric accuracy fur micromachining applications. One main challenge in reaching this goal is the control of the hydrogen built around the tool-electrode in which happen the discharges. This paper proposes the methods to improve the geometric accuracy using powder-mixed ECDM process. The experimental results show the effects of powder producing improved geometric accuracy by averaging and decreasing the concentration of spark energy.

  • PDF

Micro drilling of glass by ECDM

  • Cao, X.D.;Choi, S.H.;Chung, D.K.;Kim, B.H.;Chu, C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2007.06a
    • /
    • pp.291-292
    • /
    • 2007
  • PDF

Fabrication of PCD Micro Tool and its Hybrid Micro Machining (다결정 다이아몬드를 이용한 미세 공구 제작과 이를 이용한 미세 복합 가공)

  • Doan, Cao Xuan;Kim, Bo-Hyun;Chung, Do-Kwan;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.694-700
    • /
    • 2011
  • Since polycrystalline diamond (PCD) has high hardness like diamond, it has been used as tool material for lathe and milling of non-ferrite material. A micro tool fabricated from PCD material can be used for micro machining of hard material such as tungsten carbide, glass, and ceramics. In this paper, micro PCD tools were fabricated by micro EDM (electrical discharge machining) and used for micro grinding of glass. Craters generated on the tool surface by EDM spark work as like grits in grinding process. The effects of tool shapes, tool roughness and PCD grain size were investigated. Also studied was a hybrid process combining electrochemical discharge machining (ECDM) and micro grinding for micro-structuring of glass.