• Title/Summary/Keyword: EC concentration

Search Result 910, Processing Time 0.029 seconds

Optimum Concentration of Supply Nutrient Solution in Hydroponics of Sweet Pepper using Coir Substrates (코이어 배지를 이용한 착색단고추 수경재배 시 적정 급액농도)

  • Kim, Ho-Cheol;Cha, Seung-Hoon;Kim, Chul-Soo;Lee, Hye-Jin;Lee, Yong-Beom;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.210-214
    • /
    • 2008
  • This experiment was carried out investigation of optimum concentration of supply nutrient solution in hydroponics of sweet pepper using coir substrates (coconut dust fiber=70% : 30%, v/v). During the growing period, it was found out that the electric conductivity (EC) would increase in proportion to the supply nutrient concentration but it was in inverse proportion to the moisture content. The pH of drainage was stable, while EC was high showing EC $7.3\;dS{\cdot}m^{-1}$ in EC $4.0\;dS{\cdot}m^{-1}$ of supply nutrient concentration. Also, standard deviation and coefficient of variation were high. Plant length was no difference by the supply nutrient concentration. Photosynthesis rate was generally high in supply nutrient concentration EC$4.0\;dS{\cdot}m^{-1}$. Fruit weight was heavy in supply nutrient concentration EC $4.0\;dS{\cdot}m^{-1}$, fruit shape was close to a regular square in supply nutrient concentration EC $3.5dS{\cdot}m^{-1}$.

Effect of Nutrient Solution Ratio on Growth in ICT-Based Ginseng Process Ginseng Plant (ICT 기반의 인삼 공정 육묘 시 양액비율이 생장에 미치는 영향)

  • Dong Hyun, Kim;Yeon Bok, Kim;Hyun Jung, Koo;Hyun Jin, Baek;Su Bin, Lee;Eui Gi, Hong;Sang gi, Kim;Kwang Jin, Chang
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.5-10
    • /
    • 2022
  • After ginseng seeds were planted in sand, the first experiment was conducted by germinating seeds with a nutrient concentration of 0 to 2.5. The average germination rate was highest in EC 1.0 with a nutrient concentration of 87%, followed by the comparative group with EC 1.5, 82%, EC 2.0, 78%, EC 2.5, 72%, EC 0.5, 71%, and con, 68%. Ginseng seeds were sown in the sandy soil, grown for 60 days were transferred to the ginseng soil, and the second growth experiment was conducted 30 days later. As a result of the experiment, at the nutrient concentration of EC 1.5, it grew from 11.64cm to 15.54cm, the average total length(cm)increased the most from 3.90cm. At the EC 1.0, nutrient concentration, the average total weight(g)increased the most from 0.42g to 0.75g to 0.33g. At the EC 0.5, nutrient concentration, the average total root width(mm) increased the most from 4.06mm to 5.52mm to 1.46mm.

The Effect of Irrigation Concentration on the Growth and Fruit Quality of Sweet Pepper(Capsicum annuum L.) in Fertigation (관비재배에서 급액농도가 착색단고추의 생육과 품질에 미치는 영향)

  • 배종향;김귀호
    • Journal of Bio-Environment Control
    • /
    • v.13 no.3
    • /
    • pp.167-171
    • /
    • 2004
  • Objective of this research was to investigate the effect of irrigation concentration on the growth and fruit quality of sweet pepper(Capsicum annuum L.) in fertigation. The sweet pepper was grown for 210 days with irrigation concentration of EC 0.5, 1.0, 1.5, 2.0, and 3.0 dSㆍ$m^{-1 }$ in fertigation nutrient solution developed by European Vegetable R & D Center, Belgium. The net $CO_2$ assimilation and transpiration rate were the highest in the treatment of 2.0 dSㆍ$m^{-1 }$. The pH in the soil was range of 5.63 ~6.03, the EC increased as the irrigation concentration was getting higher. The SPAD value also increased as the irrigation concentration was getting higher, N, P, K, Mg except Ca were highest in the treatment of EC 2.0 dSㆍ$m^{-1 }$. The growth was good in the treatment of EC 2.0 dSㆍm$m^{-1 }$. The fruit length, width, firmness, and pericarp thickness had no statistical differences among treatments, the fruit fresh weight and dry weight were good in the treatment of EC 2.0 dSㆍ$m^{-1 }$ the yield was good in the treatment of EC 1.5 dSㆍ$m^{-1 }$ and EC 2.0 dSㆍ$m^{-1 }$ The sugar contents was the highest in the treatment of EC 2.0 dSㆍ$m^{-1 }$ with 9.0$^{\circ}$Brix. In conclusion, the optimal irrigation concentration for sweet pepper fertigation was EC 2.0 dSㆍm$^{-1}$ .

Estimated EC by the Total Amount of Equivalent Ion and Ion Balance Model (등가 이온 총량에 따른 EC 추정과 이온 균형 모형)

  • Soh, Jae-Woo;Lee, Yong-Beom
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.694-699
    • /
    • 2012
  • To examine the EC model in a culture medium, basic culture medium of Rush (2005) and EC model of Robinson and Strokes (1959) were applied analyzing the equivalence ion total amount, the EC variable of cation and anion. Following the experiential translation by Steiner (1980), 130 optimized domestic and foreign culture media for crop growth were utilized, and estimated EC model was also demonstrated. Results from basic culture medium of Rush (2005) suggests an estimated EC by equivalence ion total amount and high reliable regressive model with 0.96 y = 1.33x - 0.23 of 0.96 as value $R^2$. It was found out that the change in concentration of positive ion and anion did not differ significantly with the increase and decrease of EC, however, there occurred a slight variable range. The change brings about a bigger anion influence than the previously reported positive ion, seemingly like those based on nitride ion and sulfur ion. The above EC estimated models confirmed that with optimized 130 domestic and foreign culture media for crop growth, the value derived will be as follows: $R^2$ = 0.98 with y = 1.23x - 0.02. In addition, the contour analysis of positive ion and anion for EC, with popularly known concentration range of EC $1.5-2.5dS{\cdot}m^{-1}$ reveals an equivalent of more than $11meq{\cdot}L^{-1}$ for positive ion and $15meq{\cdot}L^{-1}$ for anion. On the other hand, the left bottom, low concentration $1.5dS{\cdot}m^{-1}$ and the right above, high concentration $2.5dS{\cdot}m^{-1}$, for both positive ion and anion existed differently in a proper culture medium concentration. This study adapted variables of both positive ion and anion of EC simultaneously, unlike in the previous culture medium by ion ratio in mutual ratio of Steiner (1980), and offers an EC model that can estimate levels or positive ion and anion in proper concentration, EC $1.5-2.5dS{\cdot}m^{-1}$, with distributed features of ions.

Effect of EC Levels in Nutrient Solution on the Growth of Juvenile Rose in Hydroponics Using Coir Substrate (코이어 배지 이용한 절화장미 수경재배 시 급액농도가 유묘기 생육에 미치는 영향)

  • Choi, Gyeong Lee;Cho, Myeong Whan;Cheong, Jae Woan;Rhee, Han Cheol;Kim, Young Cheol;Roh, Mi Young;Kang, Yun Im
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.317-321
    • /
    • 2012
  • This study was carried out to investigate the effect of EC levels in nutrient solution on the growth of rose in coir substrate during the juvenile. Nutrient concentration were EC 0.6, 1.0, 1.4, and $1.8dS{\cdot}m^{-1}$. In spite of high concentration of nutrient solution was supplied, EC and inorganic ions content in the extract of substrate was no difference by 22 days after planting. After that, they was rapidly increased with higher concentration of nutrient solution. Number of shoot was highest in EC $1.8dS{\cdot}m^{-1}$ at 2nd growth cycle, 90 days after planting, after that was showed a tendency to increase with increasing nutrient concentration, but was no significant difference among treatment except EC $0.6dS{\cdot}m^{-1}$. Judging by results of growth of rose and contents of inorganic ion in extracts of media, our experiment suggests that the suitable nutrient concentration is EC $1.8dS{\cdot}m^{-1}$ until 90 days and then EC $1.4dS{\cdot}m^{-1}$ until 165 days after planting that is more higher than conventional nutrient concentration for absorption by coir.

Effect of Nutrient Solution Strength on pH of Drainage Solution and Root Activity of Strawberry 'Sulhyang' in Hydroponics (배양액의 농도가 배액의 pH와 딸기 '설향' 뿌리의 활성에 미치는 영향)

  • Jun, Ha-Joon;Byun, Mi-Soon;Liu, Shi Sheng;Jang, Mi-Soon
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • Experiments were conducted to investigate the optimum concentration of the nutrient solution in strawberry 'Sulhyang' with hydroponics in relationship between root activity and nutrient concentrations. Nutrient solutions for strawberry, made by Yamazaki, were supplied EC 0.5, 1.0, 2.0 $dS{\cdot}m^{-1}$ during experiment period. Growth of shoot and root of strawberries grown in visible plastic pot was observed during experiment. Petiole length was longest in plants grown in EC 1.0 $dS{\cdot}m^{-1}$, followed by 2.0 and 0.5 $dS{\cdot}m^{-1}$. Leaf width was longest in plants grown in EC 1.0 $dS{\cdot}m^{-1}$, followed by 0.5 and 2.0 $dS{\cdot}m^{-1}$. Fruit length, fruit diameter, fruit weight and yield were higher in EC 0.5 and 1.0 $dS{\cdot}m^{-1}$ than 2.0 $dS{\cdot}m^{-1}$ treatment but, soluble solids of the fruit did not show statistical differences among treatments. Shoot dry weight was heaviest in EC 1.0 $dS{\cdot}m^{-1}$, followed by 0.5 and 2.0 $dS{\cdot}m^{-1}$. Root dry weight was heavier in EC 0.5 and 1.0 $dS{\cdot}m^{-1}$ but significantly light in 2.0 $dS{\cdot}m^{-1}$. pH of the drainage solution was elevated in low nutrient concentration and lowered in high concentration. Also root activity was high in low nutrient concentration and low in high concentration. As a result, the optimum EC for strawberry 'Sulhyang' was EC 1.0 $dS{\cdot}m^{-1}$ in this experiment. It was confirmed that there was high relationship between root activity and pH of drainage solution. This result will be utilized as an indicator for strawberry hydroponics.

The investigation of antibiotic resistance community in environment samples using EC (effective concentration) concept (EC개념을 사용하여 환경 표본안에 항생제 저항 군집에 관한 연구)

  • Kim, Sung-Pyo;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.181-187
    • /
    • 2011
  • The overall objective of this study is to develop the engineering-friendly-methodology which can investigate the fate of antibiotic resistance in environment microbial community. For this purpose, effective concentration (EC) concept was adopted with cultural based method which is currently used in engineering practice. When a tetracyline antibiotic was present as selective pressure agent among microbial community, activated sludge, the $EC_{50}$ and/or $EC_{90}$ of tetracycline in microbial community were statistically increased compared to control, especially higher growth rate and organic loading conditions of SBRs. Therefore, these results strongly suggested that the continuous monitoring of EC in microbial community can be used for characterizing the fate of tetracycline resistance community in environmental samples.

The Distribution Characteristics and Long-term Trend of Carbonaceous Species in Airborne Particulate in Seoul between 1986 and 1996

  • Hwang, Kyung-Chul;Ma, Chang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.11-20
    • /
    • 2003
  • To characterize airborne particulate carbon and its temporal variation in the heavily industrialized metropolitan city, Seoul in South Korea, aerosol sampling was performed from 1986 to 1996. Correlation coefficients of elemental carbon (EC) and organic carbon (OC) with mass concentration of fine particles ($\underline{\leq}$2.1 ${\mu}m$) are 0.73 and 0.51, respectively. EC concentrations of the fine particle mode are 10.1, 5.9, 4.5, and 7.4 ${\mu}g\;m^{-3}$ in winter, spring, summer, and autumn, respectively. On the other hand, OC concentration shows maximum value in winter and followed by autumn, summer, and spring. A seasonal peak in the ratio of OC to EC in fine particles was observed during the summer photochemical season from June to August. Concentrations of EC and OC in Asian dust storm events are generally higher than in non- Asian dust storm events except in 1990. The difference of EC concentrations between Asian dust storm periods and non-Asian dust storm periods are much larger than those of OC concentrations. There are slight increases of EC concentration between 1987 and 1990 and a gradual decrease between 1990 and 1996.

Concentrations of Carbonaceous Compounds and Quantitation of Secondary Organic Carbon in PM2.5 at Taehwa Research Forest

  • Lee, Seung-Ha;Lee, Sang-Deok;Kim, Dan-Bi;Kim, Rhok-Ho;Lee, Sang-Bo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.53-56
    • /
    • 2018
  • Elemental carbon (EC) and organic carbon (OC) mass concentrations in PM2.5 were measured from March through October 2015 in Taehwa Research Forest (TRF). The concentration of carbon in the TRF was $3.4{\mu}g/m^3$ and the concentration of EC was $1.4{\mu}g/m^3$. Also the concentration of $OC_{sec}$ was the highest at $2.84{\mu}g/m^3$ in the summer and the lowest at 1.66 in the spring. The ratio of the secondary generation OC in the total OC was the highest at 62% in the summer. Monthly OC concentration was the lowest at $2.38{\mu}g/m^3$ in April and the highest at $6.60{\mu}g/m^3$ in July. In case of EC concentration was the lowest in April ($0.98{\mu}g/m^3$) and the highest in July ($3.41{\mu}g/m^3$). The OC/EC ratio showed the lowest ratio in March and the highest rate in September. It is suggested that the secondary generation reaction of OC component was active due to sufficient irradiation amount in summer.

Growth Characteristics and Yields According to EC Concentrations and Substrates in Paprika (파프리카 수경재배 시 EC 농도와 배지에 따른 생육 및 수량 특성)

  • Hong, Youngsin;Lee, Jaesu;Baek, Jeonghyun;Lee, Sanggyu;Chung, Sunok
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.605-612
    • /
    • 2021
  • Supply electrical conductivity (EC) concentration of the nutrition solution is an important factor in the absorption of nutrients by plants and the management of the root zone, as it can control the vegetative/reproductive growth of a plant. Paprika usually undergoes its reproductive and vegetative growth simultaneously. Therefore, ensuring proper growth of the plant leads to increased yield of paprika. In this study, growth characteristics of paprika were examined according to the EC concentration of a coir and a rockwool substrate. The supply EC was 1.0, 2.0, and 4.0 mS·cm-1 applied at the initial stages of the growth using the rockwool (commonly used by paprika farmers) and the coir substrate with a chip and dust ratio of 50:50 and 70:30. For up to 16 weeks of paprika growth, EC concentrations of 1.0 and 2.0 mS·cm-1 were found to have a greater effect on the growth than EC at 4.0 mS·cm-1. The normality (marketable) rate of fruit, the soluble solid content, and paprika growth showed that the coir was generally better than the rockwool regardless of the supply EC concentration. The values of the yield per plant at an EC concentration of 4.0 mS·cm-1 was mostly similar at 1.6 kg (coir 50:50), 1.5 kg (coir 70:30) and 1.5 kg (rockwool), but the yield of the rockwool was 88%, which was lower than 98% and 94% yield of the coir substrate. Therefore, this concludes that coir substrate is more effective than rockwool at improving paprika productivity. The results also suggest that the use of coir substrate for paprika has many benefits in terms of reducing production costs and preventing environmental destruction during post-processing.