• Title/Summary/Keyword: EBGM

Search Result 10, Processing Time 0.019 seconds

ADAPTIVE THRESHOLD FOR FACE RECOGNITION (동적 경계값을 적용한 AAM과 EBGM을 이용한 얼굴인식)

  • Jeon, Seung-Seon;O, Du-Sik;Kim, Dae-Hwan;Jo, Seong-Won;Kim, Jae-Min
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.386-389
    • /
    • 2007
  • EBGM은 자세와 포즈, 조명 변화에 강인한 얼굴 인식 기법중의 하나이다. 하지만 EBGM을 통한 얼굴 인식 시스템은 얼굴의 특징점을 추출하기 위해 주어지는 초기값에 상당한 영향을 받는다. 이러한 문제를 해결하기 위해서 얼굴의 윤곽 추출에 우수한 성능을 보이는 AAM을 통하여 EBGM의 초기값을 주고 EBGM을 통하여 개선하는 방법을 제안하였었다. 본 논문에서는 등록자마다 다른 경계값을 갖는 방법을 제안한다. 기존의 경계값에 비해 성능의 향상이 어느 정도 이뤄지는가에 대해 다룰 것이다.

  • PDF

Face Recognition using Light-EBGM(Elastic Bunch Graph Matching ) Method (Light-EBGM(Elastic Bunch Graph Matching) 방법을 이용한 얼굴인식)

  • 권만준;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.138-141
    • /
    • 2004
  • 본 논문은 EBGM(Elastic Bunch Graph Matching)기법을 이용한 얼굴인식에 대해 다룬다. 대용량 영상 정보에 대해 차원 축소를 이용한 얼굴인식 기법인 주성분기법이나 선형판별기법에서는 얼굴 영상 전체의 정보를 이용하는 반면 본 논문에서는 얼굴의 눈, 코, 입 등과 같은 얼굴 특징점에 대해 주파수와 방향각이 다른 여러 개의 가버 커널과 영상 이미지의 컨볼루션(Convolution)의 계수의 집합(Jets)을 이용한 특징 데이터를 이용한다. 하나의 얼굴 영상에 대해서는 모든 영상이 같은 크기의 특징 데이터로 표현되는 Face Graph가 생성되며, 얼굴인식 과정에서는 추출된 제트의 집합에 대해서 상호 유사도(Similarity)의 크기를 비교하여 얼굴인식을 수행한다. 본 논문에서는 기존의 EBGM방법의 Face Graph 생성 과정을 보다 간략화 한 방법을 이용하여 얼굴인식 과정에서 계산량을 줄여 속도를 개선하였다.

  • PDF

Robust Face Recognition System using AAM and Gabor Feature Vectors (AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

Face Recognition using Fuzzy-EBGM(Elastic Bunch Graph Matching) Method (Fuzzy Elastic Bunch Graph Matching 방법을 이용한 얼굴인식)

  • Kwon Mann-Jun;Go Hyoun-Joo;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.759-764
    • /
    • 2005
  • In this paper we describe a face recognition using EBGM(Elastic Bunch Graph Matching) method. Usally, the PCA and LDA based face recognition method with the low-dimensional subspace representation use holistic image of faces, but this study uses local features such as a set of convolution coefficients for Gabor kernels of different orientations and frequencies at fiducial points including the eyes, nose and mouth. At pre-recognition step, all images are represented with same size face graphs and they are used to recognize a face comparing with each similarity for all images. The proposed algorithm has less computation time due to simplified face graph than conventional EBGM method and the fuzzy matching method for calculating the similarity of face graphs renders more face recognition results.

Multi-Modal Biometrics Recognition Method of Face Recognition using Fuzzy-EBGM and Iris Recognition using Fuzzy LDA (Fuzzy-EBGM을 이용한 얼굴인식과 Fuzzy-LDA를 이용한 홍채인식의 다중생체인식 기법 연구)

  • Go Hyoun-Joo;Kwon Mann-Jun;Chun Myung-Ceun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.299-301
    • /
    • 2005
  • 본 연구는 생체정보를 이용하여 개인을 인증하고 확인하기 위한 방법으로 기존 단일 생체인식 기법의 단점을 보완하기 위해 홍채와 얼굴을 이용한 다중생체인식(Multi-Modal Biometrics Recognition)기법을 연구하였다. 중국 홍채 데이터베이스 CASIA(Chinese Academy of Science)에 Gabor Wavelet과 FLDA(Fuzzy Linear Discriminant Analysis)를 사용하여 특징벡터를 획득하였으며, FERET(FERET(Face Recognition Technology) 얼굴영상데이터를 사용하여 FERET 연구에서 매우 우수한 성능을 보인 EBGM알고리듬으로 특징벡터를 획득하였다. 이로부터 얻어진 두 score 값에 대하여 다양한 균등화 과정을 시도해 보았으며, 등록자와 침입자를 구분하기 위한 Fusion Algorithm으로 Bayesian Classifier, Support vector machine, Fisher's linear discriminant를 사용하였다. 또한, 널리 사용되는 방법 중 Weighted Summation을 이용하여 다중생체인식의 성능을 비교해 보았다.

  • PDF

STK Feature Tracking Using BMA for Fast Feature Displacement Convergence (빠른 피쳐변위수렴을 위한 BMA을 이용한 STK 피쳐 추적)

  • Jin, Kyung-Chan;Cho, Jin-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.81-87
    • /
    • 1999
  • In general, feature detection and tracking algorithms is classified by EBGM using Garbor-jet, NNC-R and STK algorithm using pixel eigenvalue. In those algorithms, EBGM and NCC-R detect features with feature model, but STK algorithm has a characteristics of an automatic feature selection. In this paper, to solve the initial problem of NR tracking in STK algorithm, we detected features using STK algorithm in modelled feature region and tracked features with NR method. In tracking, to improve the tracking accuracy for features by NR method, we proposed BMA-NR method. We evaluated that BMA-NR method was superior to NBMA-NR in that feature tracking accuracy, since BMA-NR method was able to solve the local minimum problem due to search window size of NR.

  • PDF

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

Fake Face Detection and Falsification Detection System Based on Face Recognition (얼굴 인식 기반 위변장 감지 시스템)

  • Kim, Jun Young;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.9-17
    • /
    • 2015
  • Recently the need for advanced security technologies are increasing as the occurrence of intelligent crime is growing fastly. Previous liveness detection and fake face detection methods are required for the improvement of accuracy in order to be put to practical use. In this paper, we propose a new liveness detection method using pupil reflection, and new fake image detection using Adaboost detector. The proposed system detects eyes based on multi-scale Gabor feature vector in the first stage, The template matching plays a role in determining the allowed eye area. And then, the reflected image in the pupil is used to decide whether or not the captured image is live or not. Experimental results indicate that the proposed method is superior to the previous methods in the detection accuracy of fake images.

Face Disguise Detection System Based on Template Matching and Nose Detection (탬플릿 매칭과 코검출 기반 얼굴 위장 탐지 시스템)

  • Yang, Jae-Jun;Cho, Seong-Won;Lee, Kee-Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.100-107
    • /
    • 2012
  • Recently the need for advanced security technologies are increasing as the occurrence of intelligent crime is growing fastly. Previous methods for face disguise detection are required for the improvement of accuracy in order to be put to practical use. In this paper, we propose a new disguise detection method using the template matching and Adaboost algorithm. The proposed system detects eyes based on multi-scale Gabor feature vector in the first stage, and uses template matching technique in oreder to increase the detection accuracy in the second stage. The template matching plays a role in determining whether or not the person of the captured image has sunglasses on. Adaboost algorithm is used to determine whether or not the person of the captured image wears a mask. Experimental results indicate that the proposed method is superior to the previous methods in the detection accuracy of disguise faces.

Fake Face Detection System Using Pupil Reflection (동공의 반사특징을 이용한 얼굴위조판별 시스템)

  • Yang, Jae-Jun;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.645-651
    • /
    • 2010
  • Recently the need for advanced security technologies are increasing as the occurrence of intelligent crime is growing fastly. Previous liveness detection methods are required for the improvement of accuracy in order to be put to practical use. In this paper, we propose a new fake image detection method using pupil reflection. The proposed system detects eyes based on multi-scale Gabor feature vector in the first stage, and uses template matching technique in oreder to increase the detection accuracy in the second stage. The template matching plays a role in determining the allowed eye area. The infrared image that is reflected in the pupil is used to decide whether or not the captured image is fake. Experimental results indicate that the proposed method is superior to the previous methods in the detection accuracy of fake images.