• 제목/요약/키워드: E2 envelope protein

검색결과 26건 처리시간 0.026초

Hepatitis C Virus E2 외피항원에 대한 단일클론항체의 특성 연구 (Characterization of Monoclonal Antibody Specific for Hepatitis C Virus E2 Envelope Protein)

  • 박준상;이범용;정수일;민미경
    • 대한바이러스학회지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 1997
  • Hepatitis C virus (HCV) E2 protein is known to be one of putative envelope proteins. To develop a sensitive detection method for HCV infected tissues and cells, monoclonal antibodys (MAbs) to the E2 protein of HCV were prepared from mice immunized with recombinant baculovirus-expressing E2 protein (Bac-E2). Several hybridoma clones secreting various levels of MAb were isolated and isotypes of these MAb were determined. One clone (L.2.3.3) was used for ascites production and the E2-MAb was purified and characterized. The L.2.3.3 reacted well with both Bac-E2 and E. coli expressed glutathione-S-transferase-E2 (GST-E2) fusion proteins. Using HCV patient sera, E2 envelope protein was found to be localized in the cell membrane boundary both in CHO cells and insect cells which express HCV E2 protein. Similar result was obtained when same cells were treated with the MAb L.2.3.3. These results demonstrated that Bac-E2 protein is capable of eliciting high titer antibody production in mice.

  • PDF

Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein

  • Yang, Zhaoshou;Lee, Jihoo;Ahn, Hye-Jin;Chong, Chom-Kyu;Dias, Ronaldo F.;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.239-241
    • /
    • 2016
  • Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection.

돼지 콜레라 바이러스 E2 유전자의 클로닝 및 염기서열분석 (Cloning and Sequence Analysis of Hog Cholera Virus(HCV) E2 Gene)

  • 이영기;강신웅;김선원;박성원;이종철;이청호
    • 한국연초학회지
    • /
    • 제23권2호
    • /
    • pp.103-108
    • /
    • 2001
  • Hog cholera virus(HCV) was purified from virus infected Bovine kidney cells. From this virus, total protein was analyzed by SDS-PAGE gel electrophoresis and about 55 kDa band of E2 envelope protein was detected. The viral RNA was purified and E2 cDNA was amplified by RT-PCR. E2 cDNA fragment was cloned to PCRII-TOPO cloning vector and named pE2. The analysis of nucleotide sequence showed that this E2 cDNA fragment inserted into pE2 was 1191 nucleotides long and coded 397 amino acids.

  • PDF

Microsecond molecular dynamics simulations revealed the inhibitory potency of amiloride analogs against SARS-CoV-2 E viroporin

  • Jaber, Abdullah All;Chowdhury, Zeshan Mahmud;Bhattacharjee, Arittra;Mourin, Muntahi;Keya, Chaman Ara;Bhuyan, Zaied Ahmed
    • Genomics & Informatics
    • /
    • 제19권4호
    • /
    • pp.48.1-48.10
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 ㎲ (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.

Comparative Analysis of Envelope Proteomes in Escherichia coli B and K-12 Strains

  • Han, Mee-Jung;Lee, Sang-Yup;Hong, Soon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권4호
    • /
    • pp.470-478
    • /
    • 2012
  • Recent genome comparisons of E. coli B and K-12 strains have indicated that the makeup of the cell envelopes in these two strains is quite different. Therefore, we analyzed and compared the envelope proteomes of E. coli BL21(DE3) and MG1655. A total of 165 protein spots, including 62 nonredundant proteins, were unambiguously identified by two-dimensional gel electrophoresis and mass spectrometry. Of these, 43 proteins were conserved between the two strains, whereas 4 and 16 strain-specific proteins were identified only in E. coli BL21(DE3) and MG1655, respectively. Additionally, 24 proteins showed more than 2-fold differences in intensities between the B and K-12 strains. The reference envelope proteome maps showed that E. coli envelope mainly contained channel proteins and lipoproteins. Interesting proteomic observations between the two strains were as follows: (i) B produced more OmpF porin with a larger pore size than K-12, indicating an increase in the membrane permeability; (ii) B produced higher amounts of lipoproteins, which facilitates the assembly of outer membrane ${\beta}$-barrel proteins; and (iii) motility- (FliC) and chemotaxis-related proteins (CheA and CheW) were detected only in K-12, which showed that E. coli B is restricted with regard to migration under unfavorable conditions. These differences may influence the permeability and integrity of the cell envelope, showing that E. coli B may be more susceptible than K-12 to certain stress conditions. Thus, these findings suggest that E. coli K-12 and its derivatives will be more favorable strains in certain biotechnological applications, such as cell surface display or membrane engineering studies.

HIV-1 Vaccine Development: Need For New Directions

  • Cho Michael W.
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2000년도 추계학술발표대회
    • /
    • pp.78-82
    • /
    • 2000
  • The AIDS epidemic continues unabated in many part of the world. After near two decades, no vaccine is available to combat the spread of this deadly disease. Much of the HIV -1 vaccine effort during the past decade has focused on the viral envelope glycoprotein, largely because it is the only protein that can elicit neutralizing antibodies (Nabs). Eliciting broadly cross-reactive Nabs has been a primary goal. The intrinsic genetic diversity of the viral envelope, however, has been one of the major impediments in vaccine development. We have recently completed a comprehensive study examining whether it is possible to elicit broadly acting Nabs by immunizing monkeys with mixtures of envelope proteins from multiple HIV -1 isolates. We compared the humoral immune responses elicited by vaccination with either single or multiple envelope proteins and evaluated the importance of humoral and non-humoral immune response in protection against a challenge virus with a homologous or heterologous envelope protein. Our results show that (1) Nab is the correlate of sterilizing immunity, (2) Nabs against primary HIV -1 isolates can be elicited by the live vector-prime/protein boost approach, and (3) polyvalent envelope vaccines elicit broader Nab response than monovalent vaccines. Nonetheless, our findings clearly indicate that the increased breadth of Nab response is by and large limited to strains included in the vaccine mixture and does not extend to heterologous non-vaccine strains. Our study strongly demonstrates how difficult it may be to elicit broadly reactive Nabs using envelope proteins and sadly predicts a similar fate for many of the vaccine candidates currently being evaluated in clinical trials. We have started to evaluate other vaccine candidates (e.g. genetically modified envelope proteins) that might elicit broadly reactive Nabs. We are also exploring other vaccine strategies to elicit potent cytotoxic T lymphocyte responses. Preliminary results from some of these experiments will be discussed.

  • PDF

Development of a Rapid Diagnostic Test Kit to Detect IgG/IgM Antibody against Zika Virus Using Monoclonal Antibodies to the Envelope and Non-structural Protein 1 of the Virus

  • Kim, Yeong Hoon;Lee, Jihoo;Kim, Young-Eun;Chong, Chom-Kyu;Pinchemel, Yanaihara;Reisdorfer, Francis;Coelho, Joyce Brito;Dias, Ronaldo Ferreira;Bae, Pan Kee;Gusmao, Zuinara Pereira Maia;Ahn, Hye-Jin;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제56권1호
    • /
    • pp.61-70
    • /
    • 2018
  • We developed a Rapid Diagnostic Test (RDT) kit for detecting IgG/IgM antibodies against Zika virus (ZIKV) using monoclonal antibodies to the envelope (E) and non-structural protein 1 (NS1) of ZIKV. These proteins were produced using baculovirus expression vector with Sf9 cells. Monoclonal antibodies J2G7 to NS1 and J5E1 to E protein were selected and conjugated with colloidal gold to produce the Zika IgG/IgM RDT kit (Zika RDT). Comparisons with ELISA, plaque reduction neutralization test (PRNT), and PCR were done to investigate the analytical sensitivity of Zika RDT, which resulted in 100% identical results. Sensitivity and specificity of Zika RDT in a field test was determined using positive and negative samples from Brazil and Korea. The diagnostic accuracy of Zika RDT was fairly high; sensitivity and specificity for IgG was 99.0 and 99.3%, respectively, while for IgM it was 96.7 and 98.7%, respectively. Cross reaction with dengue virus was evaluated using anti-Dengue Mixed Titer Performance Panel (PVD201), in which the Zika RDT showed cross-reactions with DENV in 16.7% and 5.6% in IgG and IgM, respectively. Cross reactions were not observed with West Nile, yellow fever, and hepatitis C virus infected sera. Zika RDT kit is very simple to use, rapid to assay, and very sensitive, and highly specific. Therefore, it would serve as a choice of method for point-of-care diagnosis and large scale surveys of ZIKV infection under clinical or field conditions worldwide in endemic areas.

Hepatitis C Virus Core Protein Is Efficiently Released into the Culture Medium in Insect Cells

  • Choi, Soo-Ho;Kim, So-Yeon;Park, Kyu-Jin;Kim, Yeon-Joo;Hwang, Soon-Bong
    • BMB Reports
    • /
    • 제37권6호
    • /
    • pp.735-740
    • /
    • 2004
  • Hepatitis C virus (HCV) is a causal agent of the chronic liver infection. To understand HCV morphogenesis, we studied the assembly of HCV structural proteins in insect cells. We constructed recombinant baculovirus expression vectors consisting of either HCV core alone, core-E1, or core-E1-E2. These structural proteins were expressed in insect cells and were examined to assemble into particles. Neither core-E1 nor core-E1-E2 was capable of assembling into virus-like particles (VLPs). It was surprising that the core protein alone was assembled into core-like particles. These particles were released into the culture medium as early as 2 days after infection. In our system, HCV structural proteins including envelope proteins did not assemble into VLPs. Instead, the core protein itself has the intrinsic capacity to assemble into amorphous core-like particles. Furthermore, released core particles were associated with HCV RNA, indicating that core proteins were assembled into nucleocapsids. These results suggest that HCV may utilize a unique core release mechanism to evade the hosts defense mechanism, thus contributing to the persistence of HCV infection.

C 형 간염 바이러스의 외피당단백질 E1 및 E2의 융합단백질 $GST-E1_{192-283}$$-E2_{384-649}$의 대장균에서의 과량발현 및 면역원성 연구 (Overexpression of the $E1_{192-283}$ and $E2_{384-649}$ Proteins of Hepatitis C Virus in GST Fusion Forms in E. coli and Their Immunogenicity)

  • 성영림;최시영;임동수
    • 대한바이러스학회지
    • /
    • 제27권2호
    • /
    • pp.105-113
    • /
    • 1997
  • C 형 간염 바이러스 (Hepatitis C Virus, HCV)는 두종류의 외피당단백질 $E1_{192-383}$$E2_{384-746}$를 갖고 있다. $E1_{192-383}$$E2_{384-740}$ 단백질은 glutathione S-transferae (GST) 융합단백질의 형태로 대장균에서 발현되지 않았으나, 이 단백질들의 C말단에 존재하는 소수성영역을 제거하였을 때 $GST-E1_{192-283}$ 융합단백질은 과량으로 가용성 형태로 발현되었고, $GST-E2_{384-649}$ 융합단백질은 비 가용성 형태로 발현되었다. 이 융합단백질들 각각은 HCV 양성환자의 혈청과 특이적으로 반응하였다. Thrombin으로 처리하여 얻은 정제된 $E1_{192-283}$ 단백질 및 융합형태의 $GST-E2_{384-649}$ 단백질 각각을 생쥐에 접종하였을 때 E1 및 E2 특이적인 항체가 생성되었다. 이 결과들은 $E1_{192-383}$$E2_{384-649}$ 융합단백질 C 말단에 존재하는 소수성영역이 이 단백질들의 발현량 및 가용성에 영향을 주며 $E1_{192-283}$ 단백질 영역내에 HCV 양성환자의 혈청과 특이적으로 반응하는 epitope (s)이 존재한다는 것을 제시해 주고 있다.

  • PDF