Three combinations of molecular chaperones from Escherichia coli (i.e., DnaK-DnaJ-GrpE-GroEL-GroES, GroEL-GroES, and DnaK-DnaJ-GrpE) were overproduced in E. coli BL21, and their in vitro stabilizing effects on a nitrile hydratase (NHase) were assessed. The optimal gene combination, E. coli groEL-groES (ecgroEL-ES), was introduced into Rhodococcus ruber TH3. A novel engineered strain, R. ruber TH3G was constructed with the native NHase gene on its chromosome and the heterologous ecgroEL-ES genes in a shuttle plasmid. In R. ruber TH3G, NHase activity was enhanced 37.3% compared with the control, TH3. The in vivo stabilizing effect of ecGroEL-ES on the NHase was assessed using both acrylamide immersion and heat shock experiments. The inactivation behavior of the in vivo NHase after immersion in a solution of dynamically increased concentrations of acrylamide was particularly evident. When the acrylamide concentration was increased to 500 g/l (50%), the remaining NHase activity in TH3G was 38%, but in TH3, activity was reduced to 10%. Reactivation of the in vivo NHases after varying degrees of inactivation was further assessed. The activity of the reactivated NHase was more than 2-fold greater in TH3G than in TH3. The hydration synthesis of acrylamide catalyzed by the in vivo NHase was performed with continuous acrylonitrile feeding. The final concentration of acrylamide was 640 g/l when catalyzed by TH3G, compared with 490 g/l acrylamide by TH3. This study is the first to show that the chaperones ecGroEL-ES work well in Rhodococcus and simultaneously possess protein-folding assistance functions and the ability to stabilize and reactivate the native NHases.
Molecular chaperones prevent the misfolding of newly synthesized polypeptides in the cell. The coexpression of molecular chaperones could be expected to improve the production of soluble and active recombinant proteins. In this study, the effect of coexpression of E. coli GroEL/ES chaperone on the active production of Bacillus macerans cyclodextrin glucanotransferase (CGTase) in E. coli was investigated. Two plasmids, pTCGT1 and pGro7 in which the cgt and the groEL/ES genes are under the control of 77 promoter and araB promoter, respectively, were co-transformed into E. coli. With a series of cultures of recombinant E. coli cells, the optimal concentrations of IPTG and L-arabinose were found be 1 mM and 0.3 mg/$m\ell$, respectively. When IPTG and L-arabinose were added at 0.8~1.0 $OD_{600}$ and 0.4~0.5 $OD_{600}$, active CGTase production was increased significantly. This coexpression condition resulted in 1.5-fold increased level of soluble CGTase (0.7~0.73 unit/$m\ell$), compared to the level of CGTase in the single expression (0.36~0.56 unit/$m\ell$). An SDS-PACE analysis revealed that about 33.6% of CGTase in the total CGTase protein was found in the soluble fraction by coexpression of GroEL/ES chaperone.
Some proteins of E. coli are stable at temperatures significantly higher than $49^{\circ}C$, the maximum temperature at which the organism can grow. The heat stability of such proteins would be a property which is inherent to their structures, or it might be acquired by evolution for their specialized functions. In this study, we describe the identification of 17 heat-stable proteins from E. coli. Approximately one-third of these proteins were recognized as having functions in the protection of other proteins against denaturation. These included chaperonin (GroEL and GroES), molecular chaperones (DnaK and FkpA) and peptidyl prolyl isomerases (trigger factor and FkpA). Another common feature was that five of these proteins (GroEL, GroES, Ahpc, RibH and ferritin) have been shown to form a macromolecular structure. These results indicated that the heat stability of certain proteins may have evolved for their specialized functions, allowing them to cope with harsh environments, including high temperatures.
PARK SO-LIM;SHIN EUN-JUNG;HONG SEUNG-PYO;JEON SUNG-JONG;NAM SOO-WAN
Journal of Microbiology and Biotechnology
/
v.15
no.6
/
pp.1267-1272
/
2005
The effects of coexpression of GroEL/ES and DnaK/DnaJ/GrpE chaperones on the productivity of the soluble form of human granulocyte colony stimulating factor (hG-CSF) in E. coli were examined. Recombinant hG-CSF protein was coexpressed with DnaK/DnaJ/GrpE or GroEL/ES chaperones under the control of the araB or Pzt-1 promoter, respectively. The optimal concentration of L-arabinose for the expression of DnaK/DnaJ/GrpE was found to be 1 mg/ml. When L-arabinose was added at $OD_{600}$=0.2 (early-exponential phase), soluble hG-CSF production was greatly increased. In addition, it was observed that the DnaK/DnaJ/GrpE and GroEL/ES chaperones had no synergistic effects on preventing aggregation of hG-CSF protein. Consequently, by coexpression of the DnaK/DnaJ/GrpE chaperone, the signal intensity of the hG-CSF protein band in the soluble fraction of cell lysate was increased from $3.5\%\;to\;13.9\%$, and Western blot analysis also revealed about a 4-5-fold increase of production of soluble hG-CSF over the non-induction case of DnaK/DnaJ/GrpE.
Lee, A Reum;Li, Ling;Shin, So-Yeon;Moon, Jin Seok;Eom, Hyun-Ju;Han, Nam Soo
Microbiology and Biotechnology Letters
/
v.43
no.3
/
pp.212-218
/
2015
Fucosyltransferases (FucTs) catalyze fucosyl transfer from guanosine-diphosphate fucose (GDP-β-L-fucose) to acceptor molecules to form fucosyloligosaccharides with α-glycosidic linkages. However, when FucT genes have been expressed in Escherichia coli, most cases have resulted in the production of inclusion bodies. In this study, to overcome this drawback, molecular chaperones were co-expressed with α1,2-fucosyltransferase (FucT2) in E. coli. For this, the pACYC184 vector, having genes for chaperones such as GroEL, GroES, DnaK, DnaJ, and GrpE, were transformed into E. coli BL21 (DE3) star harboring pHFucT2, including the FucT2 gene from Helicobacter pylori 26695. The results from SDS-PAGE showed that 5 chaperones were successfully expressed and the soluble fraction of FucT2 was also increased. HPLC analysis revealed that the coexpression of chaperone proteins resulted in a 5-fold increase in the total activity of fucosyltransferase in E. coli. In conclusion, the FucT2 expression system developed in this study can be used as a useful tool for the synthesis of fucosyloligosaccharides.
When the alginate lyase gene (aly) from Pseudoalteromonas elyakovii was expressed in E. coli, most of the gene product was organized as aggregated insoluble particles known as inclusion bodies. To examine the effects of chaperones on soluble and nonaggregated form of alginate lyase in E. coli, we constructed plasm ids designed to permit the coexpression of aly and the DnaK/DnaJ/GrpE or GroEL/ES chaperones. The results indicate that coexpression of aly with the DnaK/DnaJ/GrpE chaperone together had a marked effect on the yield alginate lyase as a soluble and active form of the enzyme. It is speculated this result occurs through facilitation of the correct folding of the protein. The optimal concentration of L-arabinose required for the induction of the DnaK/DnaJ/GrpE chaperone was found to be 0.05mg/mL. An analysis of the protein bands on SDS-PAGE gel indicated that at least 37% of total alginate lyase was produced in the soluble fraction when the DnaK/DnaJ/GrpE chaperone was coexpressed.
When alginate lyase gene (aly) from Pseudoalteromonas elyakovii was expressed in E. coli, most of the gene product was produced as aggregated insoluble particles known as inclusion bodies. In order to produce a soluble and active form of alginate lyase, E. coli cells fore cotransformed with the plasmids designed to permit coexpression of aly together with molecular chaperones such as DnaK/DnaJ/GrpE or GroEL/ES chaperones. The results revealed that the coexpression of aly together with DnaK/DnaJ/GrpE chaperone had a marked effect on the production of this protein as a soluble and active form, presumably through facilitating correct folding of alginate lyase protein. The optimal concentration of L-arabinose for the induction of DnaK/DnaJ/GrpE chaperone was found to be 0.05 mg/ml. When DnaK/DnaJ/GrpE chaperone was coexpressed, about 34% in the total alginate lyase was produced in the soluble fraction. By addition of 10% cetylpyridinium chloride, a clear zone around the colony coexpressing aly and DnaK/DnaJ/GrpE chaperone was formed, indicating that the alginate in the medium was hydrolyzed by active alginate lyase enzyme.
Soybean seed ferritin is essential for human iron supplementation and iron deficiency anemia prevention because it contains abundant bioavailable iron and is frequently consumed in the human diet. However, it is poorly understood in regards its several properties, such as iron mineralization, subunit assembly, and protein folding. To address these issues, we decided to prepare the soybean seed ferritin complex via a recombinant DNA approach. In this paper, we report a rapid and simple Escherichia coli expression system to produce the soybean seed ferritin complex. In this system, two subunits of soybean seed ferritin, H-2 and H-1, were encoded in a single plasmid, and optimal expression was achieved by additionally coexpressing a team of molecular chaperones, trigger factor and GroEL-GroES. The His-tagged ferritin complex was purified by $Ni^{2+}$ affinity chromatography, and an intact ferritin complex was obtained following His-tagged enterokinase (His-EK) digestion. The purified ferritin complex synthesized in E. coli demonstrated some reported features of its native counterpart from soybean seed, including an apparent molecular weight, multimeric assembly, and iron uptake activity. We believe that the strategy described in this paper may be of general utility in producing other recombinant plant ferritins built up from two types of subunits.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.