Effect of Molecular Chaperones on the Soluble Expression of Alginate Lyase in E. coli

  • Published : 2006.10.30

Abstract

When the alginate lyase gene (aly) from Pseudoalteromonas elyakovii was expressed in E. coli, most of the gene product was organized as aggregated insoluble particles known as inclusion bodies. To examine the effects of chaperones on soluble and nonaggregated form of alginate lyase in E. coli, we constructed plasm ids designed to permit the coexpression of aly and the DnaK/DnaJ/GrpE or GroEL/ES chaperones. The results indicate that coexpression of aly with the DnaK/DnaJ/GrpE chaperone together had a marked effect on the yield alginate lyase as a soluble and active form of the enzyme. It is speculated this result occurs through facilitation of the correct folding of the protein. The optimal concentration of L-arabinose required for the induction of the DnaK/DnaJ/GrpE chaperone was found to be 0.05mg/mL. An analysis of the protein bands on SDS-PAGE gel indicated that at least 37% of total alginate lyase was produced in the soluble fraction when the DnaK/DnaJ/GrpE chaperone was coexpressed.

Keywords

References

  1. Sawabe, T., H. Takahashi, Y. Ezura, and P. Gacesa (2001) Cloning, sequence analysis and expression of Pseudoalteromonas elyakovii IAM 14594 gene (alyPEEC) encoding the extracellular alginate lyase. Carbohydr. Res. 335: 11-21 https://doi.org/10.1016/S0008-6215(01)00198-7
  2. Preiss, J. and G. Ashwell (1962) Alginic acid metabolism in bacteria. J. Biol. Chem. 237: 309-316
  3. Yoon, H. J., W. Hashimoto, O. Miyake, M. Okamoto, B. Mikami, and K. Murata (2000) Overexpression in Escherichia coli, purification, and characterization of Sphin-gomonas sp. Al alginate lyases. Protein Expr. Purif. 19: 84-90 https://doi.org/10.1006/prep.2000.1226
  4. Onsoyen, E. (1996) Commercial applications of alginates. Carbohydr. Eur. 14: 26-31
  5. Renn, D. (1997) Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol. 15: 9-14 https://doi.org/10.1016/S0167-7799(96)10069-X
  6. Murata, K, T. Inose, T. Hisano, S. Abe, Y. Yonemoto, T. Yamashita, M. Takagi, K. Sakaguchi, A. Kimura, and T. Imanaka (1993) Bacterial alginate lyase: enzymology, genetics and application. J. Ferment. Bioeng. 76: 427-437 https://doi.org/10.1016/0922-338X(93)90040-F
  7. Kim, J. E., E. J. Kim, W. J. Rhee, and T. H. Park (2005) Enhanced production of recombinant protein in Escherichia coli using silkworm hemolymph. Biotechnol. Bioprocess Eng. 10:353-356 https://doi.org/10.1007/BF02931854
  8. Jin, H. H., N. S. Han, D. K. Kweon, Y. C. Park, and J. H. Seo (2001) Effects of environmental factors on in vivo folding of Bacillus macerans cyclodextrin glycosyltrans-ferase in recombinant Escherichia coli. J. Microbiol. Biotechnol. 11:92-96
  9. Kim, C. I., M. D. Kim, Y. C. Park, N. S. Han, and J. H. Seo (2000) Refolding of Bacillus macerans cyclodextrin glucanotransferase expressed as inclusion bodies in recombinant Escherichia coli. J. Microbiol. Biotechnol. 10: 632-637
  10. Kondo, A., J. Kohda, Y. Endo, T. Shiromizu, Y. Kurokawa, K. Nishihara, H. Yanagi, T. Yura, and H. Fukuda (2000) Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J. Biosci. Bioeng. 90: 600-606 https://doi.org/10.1263/jbb.90.600
  11. Thomas, J. G., A. Ayling, and F. Baneyx (1997) Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 66: 197-238 https://doi.org/10.1007/BF02785589
  12. Kim, H. and I. H. Kim (2005) Refolding of fusion ferritin by gel filtration chromatography (GFC). Biotechnol. Bioprocess Eng. 10: 500-504 https://doi.org/10.1007/BF02932284
  13. Guan, Y.-X., H.-X. Pan, Y.-G. Gao, S.-J. Yao, and M.-G. Cho (2005) Refolding and purification of recombinant human interferon-y expressed as inclusion bodies in Escherichia coli using size exclusion chromatography. Biotechnol. Bioprocess Eng. 10: 122-127 https://doi.org/10.1007/BF02932581
  14. Kwon, M. J., S. L. Park, S. K. Kim, and S. W. Nam (2002) Overproduction of Bacillus macerans cyclodextrin glucanotransferase in E. coli by coexpression of GroEL/ES chaperone. J. Microbiol. Biotechnol. 12: 1002-1005
  15. Lamark, T., M. Ingebrigtsen, C. Bjornstad, T. Melkko, T. E. Mollnes, and E. W. Nielsen (2001) Expression of active human C1 inhibitor serpin domain in Escherichia coli. Protein Expr. Purif. 22: 349-358 https://doi.org/10.1006/prep.2001.1445
  16. Park, S. L., M. J. Kwon, S. K. Kim, and S. W. Nam (2004) GroEL/ES chaperone and low culture temperature synergistically enhanced the soluble expression of CGTase in E. coli. J. Microbiol. Biotechnol. 14: 216-219
  17. Sareen, D., R. Sharma, and R. M. Vohra (2001) Chaper-one-assisted overexpression of an active D-carbamoylase from Agrobacterium tumefaciens AM 10. Protein Expr. Purif. 23: 374-379 https://doi.org/10.1006/prep.2001.1532
  18. Hoshino, K., A. Eda, Y. Kurokawa, and N. Shimizu (2002) Production of brain-derived neurotrophic factor in Escherichia coli by coexpression of Dsb proteins. Biosci. Biotechnol. Biochem. 66: 344-350 https://doi.org/10.1271/bbb.66.344
  19. Kurokawa, Y., H. Yanagi, and T. Yura (2000) Overexpression of protein disulfide isomerase DsbD stabilize multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66: 3960-3965 https://doi.org/10.1128/AEM.66.9.3960-3965.2000
  20. Han, M. J., S. J. Park, T. J. Park, and S. Y. Lee (2004) Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol. Bioeng. 88: 426-436 https://doi.org/10.1002/bit.20227
  21. Chung, K. T., T. H. Lee, and G. S. Kang (2003) Isolation of proteins that specifically interact with the ATPase domain of mammalian ER chaperone, BiP. Biotechnol. Bioprocess Eng. 8: 192-198 https://doi.org/10.1007/BF02935896
  22. Dumitru, G. L., Y. Groemping, D. Klostermeier, T. Restle, E. Deuerling, and J. Reinstein (2004) DafA cycles between the DnaK chaperone system and translationalmachinery. J. Mol.Biol. 339: 1179-1189 https://doi.org/10.1016/j.jmb.2004.04.052
  23. Diamant, S., A. P. Ben-Zvi, B. Bukau, and P. Goloubinoff (2000) Size-dependent disaggregation for stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 275:21107-21113 https://doi.org/10.1074/jbc.M001293200
  24. Gragerov, A., E. Nudler, N. Komissarova, G. A. Gaitanaris, M. E. Gottesman, and V. Nikiforov (1992) Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 10341-10344
  25. Szabo, A., T. Langer, H. Schroder, J. Flanagan, B. Bukau, and F. U. Hartl (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91: 10345-. 10349
  26. Weissman, J. S., H. S. Rye, W. A. Fenton, J. M. Beechem, and A. L. Horwich (1996) Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84: 481-490 https://doi.org/10.1016/S0092-8674(00)81293-3
  27. Ying, B. W., H. Taguchi, H. Ueda, and T. Ueda (2004) Chaperone-assisted folding of a single-chain antibody in a reconstituted translation system. Biochem. Biophys. Res. Commun. 320: 1359-1364 https://doi.org/10.1016/j.bbrc.2004.06.095
  28. Nishihara, K., M. Kanemori, M. Kitagawa, H. Yanagi, and T. Yura (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64: 1694-1699
  29. Yoon, H. J., Y. J. Choi, O. Miyake, W. Hashimoto, K. Murata, and B. Mikami (2001) Effect of Hisl92 mutation on the activity of alginate lyase A1 -III from Sphingomonas species A1. J. Microbiol. Biotechnol. 11: 118-123
  30. Hicks, S. J. and P. Gacesa (1996) Heterologous expression of full-length and truncated forms of the recombinant guluronate-specific alginate lyase of Klebsiella pneumoniae. Enzyme Microb. Technol. 19: 68-73 https://doi.org/10.1016/0141-0229(95)00175-1
  31. Gonzalez-Montalban, N., M. M. Carrio, S. Cuatrecasas, A. Aris, and A. Villaverde (2005) Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. J. Biotechnol. 118: 406-412 https://doi.org/10.1016/j.jbiotec.2005.05.024
  32. Park, S. L., E. J. Shin, S. P. Hong, S. J. Jeon, and S. W. Nam (2004) Production of soluble human granulocyte colony stimulating factor in E. coli by molecular chaperones. J. Microbiol. Biotechnol. 14: 216-219
  33. Chen, Y., J. Song, S. F. Sui, and D. N. Wang (2003) DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expr. Purif. 32:221-231 https://doi.org/10.1016/S1046-5928(03)00233-X
  34. Kwak, Y. H., S. J. Kim, K. Y Lee, and H. B. Kim (2000) Stress responses of the Escherichia coli groE promoter. J. Microbiol. Biotechnol. 10: 63-68