• Title/Summary/Keyword: E. chrysanthemi

Search Result 7, Processing Time 0.016 seconds

Bacterial Soft Rot of Radishby Erwinia chrysanthemi (Erwinia chrysanthemi에 의한 무 세균성 무름병)

  • 박덕환;서상태;이흥구;최국선;임춘근
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.61-63
    • /
    • 1999
  • Bacterial soft rot was observed on radish grown in Hongcheon, Kanwon-Do, Korea. The soft rot symptoms began as small water-soaked lesions. The water-soaked lesions enlarged rapidly in roots and produced a foul odor. When roots were affected in the field, the shoots also became infected and watery, causing infected plants to wilt, disorganize, and die. The causal organism was isolated from the lesions, and the identified as Erwinia chrysanthemi based on the morphological, physiological and biochemical characteristics. E. chrysanthemi is first described bacterium which causes bacterial soft rot on radish in Korea.

  • PDF

Bacterial Brwon Rot of Ivy-aureus (Scindapsus aureus) Caused by Erwinia chrysanthemi (Erwinia chrysanthemi에 의한 Ivy-aureus (Scindapsus aureus)의 세균성 갈색부패병)

  • 최재을;한광섭
    • Korean Journal Plant Pathology
    • /
    • v.10 no.4
    • /
    • pp.336-338
    • /
    • 1994
  • In 1991, the leaf brown spot of ivy-aureus (Scindapsus aureus) was found in Taejon and Seoul, Korea. The symptoms were appeared as dark-brown spots. The lesions were often surrounded by yellowish halos. These spots were enlarged to circular or elliptical in shape and dark-brown to black in color with slightly elevated in margin and sunken in center. The pathogenic bacteria were isolated from the diseased leaf of ivy-aureus were identified as Erwinia chrysanthemi on the basis of bacterial characteristics therefore, we would like to propose to the name of ivy-aureus disease caused by E. chrysanthemi as“bacterial brown rot of ivy-aureus”hereafter.

  • PDF

Studies on the Bacterial Soft Rot Disease of Lilliaceae Crops 1. Identification of Erwinia Causing Soft Rot of Onion (백합과(百合科) 채소(菜蔬)의 세균성(細菌性) 부패병(腐敗病)에 관(關)한 연구(硏究) 1. 양파 부패(腐敗)를 일으키는 Erwinia 속(屬) 세균(細菌)의 동정(同定))

  • Han, Kwang Sup;Choi, Jae Eul
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.1
    • /
    • pp.19-25
    • /
    • 1989
  • Twelve isolates of bacteria obtained from infected onions were classified into genus Erwinia based on diagnostic characteristics. Of twelve isolates studied, five were identified as E. carotovora subsp. carotovora, six as E. rhapontici and one as E. chrysanthemi on the bases of bacteriological properties. Symptoms caused by the genus Erwinia were different to be identified among the species. Therefore, we propose to name the disease of onion caused by E. carotovora subsp. carotovora, E. rhapontici and E. chrysanthemi as "bacterial soft rot of onion".

  • PDF

Effect of Carbon Sources and Culture Temperature on Pectate Lyase Production in Phytopathogenic Bacteria (탄소원과 배양온도가 식물 병원세균의 Pectate lyase 생산에 미치는 영향)

  • 한광섭;최재을
    • Korean Journal Plant Pathology
    • /
    • v.14 no.2
    • /
    • pp.125-129
    • /
    • 1998
  • Phytopathogenic bacteria causing soft-rot many vegetables; extracellular enzymes produced by them, pectate lyase(Pel) is important pathogenicity facotrs which cause tissue maceration and cell death. Ten of seventeen plant pathogenic bacteria showed weak Pel activity, four of them showed low Pel activity and Erwinia acrotovora subsp. carotovora, E. chrysanthemi, Pseudomonas marginalis and Xanthomonas campestris pv. campestris showed high Pel activity in the polygalacturonate yeast extract agar (PAY) plate. High Pel activity of the four bacteria species produced the highest Pel activity when pectin or polygalacturonic acid (PGA) was added to minimal salts (MS) medium. Pel activity of the four bacterial species was the highest at 2$0^{\circ}C$ among different temperature conditions. The rate and amount of maceration of potato tuber tissue were highest at 2$0^{\circ}C$ in E. carotovora subsp. carotovora, E. chrysanthemi and P. marginalis, while those were the highest at $25^{\circ}C$ in X. campestris pv. campetris.

  • PDF

Bacterial Soft Rot of Dendrobium phalaenopsis and Phalaneopsis Species by Erwinia chrysanthemi

  • Lee, Dong-Hyun;Kim, Jung-Ho;Lee, Jae-Hong;Hur, Jae-Seoun;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.15 no.5
    • /
    • pp.302-307
    • /
    • 1999
  • Occurrence of soft rots was observed on Dendrobium phalaenopsis and Phalaenopsis sp. that were grown at the greenhouses in Sunchon and Kwangyang areas, Chonnam province of Korea in 1997 and 1998. Typical soft rot symptom appeared frequently on young plants of D. phalaenopsis and Phalaenopsis sp. Soft rot symptom usually appeared on old leaves of D. phalaenopsis, and extended into whole leaves, accompanying blighting of whole plants. Symptom began as a small water-soaked lesion on old leaves of Phalaenopsis sp., which enlarged rapidly on the leaves and eventually resulted in soft rots of whole plants. The causal organism isolated from the infected lesions was identified as Erwinia chrysanthemi based on its pathogenicity, physiological and biochemical characteristics, and the results of the BIOLOGTM program. The bacterial soft rot caused by e. chrysanthemi was firstly describe din D. phalaenopsis and Phalanopsis sp. in Korea.

  • PDF

Regulatory Effects of Chrysanthemi Zawadskii Herba on NO Production and Vascular Adhesion Molecule Expression (구절초(Chrysanthemi Zawadskii Herba)의 항염증 인자 생성 및 혈관부착인자 발현 억제 효과)

  • Sohn, E.S.;Kim, S.H.;Ha, C.W.;Jang, S.;Sohn, E.H.;Chae, C.J.;Koo, H.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.1
    • /
    • pp.14-22
    • /
    • 2022
  • The purpose of this study is to provide evidence for discovering functional materials through the anti-inflammatory efficacy screening of randomly selected medicinal herbs. We prepared 70% ethanol extracts from 10 herbs and evaluated for the inhibitory effect of NO production on LPS-stimulated mouse macrophage cell line Raw 264.7. As a result, it was confirmed that the Chrysanthemi Zawadskii Herba (CZ) extract had the highest effect of inhibiting NO production induced by LPS. We therefore measured and compared NO inhibitory effects at different concentrations (10, 50, 250 ㎍/mL) of 70% ethanol and water extract of CZ. It was observed that both ethanol and water treatment groups inhibited NO production in a concentration-dependent manner in both ethanol and water treatment groups. In particular, it was confirmed that the CZ 70% ethanol extract (99.97%) had a higher NO inhibitory effect than the water extract (93.32%) in the high concentration (250 ㎍/mL) treatment group. There was no effect of CZ extract on cell viability at all concentrations used in the experiment. Moreover, it was shown that CZ ethanol extract remarkably inhibited the expression of VCAM-1 induced by TNF-𝛼, and it was slightly decreased even by treatment with water extract. This study suggests that Chrysanthemi Zawadskii Herba has potential as a functional substance that regulates vascular inflammation.

Phylogenetic Analysis of Pectobacterium Species Using the 16S-23S rRNA Intergenic Spacer Regions

  • Kwon, Soon-Wo;Cheun, Meung-Sook;Kim, Sang-Hee;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.16 no.2
    • /
    • pp.98-104
    • /
    • 2000
  • For the taxonomic evaluaition, 15 strains of the genus Pectobacterium and Erwinia were analyzed for 16S-23S rDNA intergenic spacer regions (ISRs). These species contained two types of ISRs, large and small ISRs. Large ISRs were on the range of 474-569 bp size, and coding transfer $\textrm{RNA}^{11e}$($\textrm{tRNA}^{11e}$) and $\textrm{tRNA}^{Ala}$. Small ISRs were 354-459 bp in length and coding $\textrm{tRNA}^{Glu}$. The sequence variations of two ISRs among species and strains were very high as compared with 16S rRNA gene sequences. By phylogenetic trees on the basis of two ISRs, Pectobacterium ere differentiated into P. carotovorum-P. cactiaidum group and P. chrysanthemi group. However, the taxonomic position of E. cypripedii and E. rhapontici, which were not clear on taxonomic delineation between Pectobacterium and Erwinia, were not clearly resolved on the basis of ISRs.

  • PDF