• Title/Summary/Keyword: E-patch antenna

Search Result 85, Processing Time 0.023 seconds

Miniaturization of Microstrip Antenna Using 'L' Shaped Plate ('L'자형 Plate를 이용한 마이크로스트립 안테나의 소형화)

  • Jang Yon-Jeong;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.501-510
    • /
    • 2005
  • In this paper, the miniaturized linear and circular polarization microstrip antennas are designed and fabricated at the resonant frequency of 1.575 GHz. To miniaturize the microstrip patch antenna(MPA), the 'L' type plates are attached under the rectangular microstrip patch. In case of the linear polarization, the size of the microstrip antenna attached the 14 plates is reduced to $67.9\%(47mm{\times}47mm)$ compared with general $MPA(83mm{\times}83mm)$. The return loss and -10 dB bandwidth are -34.4 dB and 49 $MHz(3.1\%)$. And the radiation pattern is broad through the size reduction of the patch. Also in case of the circular polarization, the size of the microstrip antenna with 13 plates is reduced to $54.6\%(53mm{\times}54mm)$ compared with the general $MPA(76mm{\times}83mm)$. The axial ratio is 1.37dB at 1.575 GHz, the 2 dB axial ratio bandwidth is 14 $MHz(0.8\%)$. As that result, we could confirm that 3-dimensional structure with attached 'L' shaped plate is proper form for the miniaturization of linear and circular polarization microstrip antenna.

An Improvement of Closed-Form Formula for Mutual Impedance Computation

  • Son, Trinh-Van;Hwang, Keum Cheol;Park, Joon-Young;Kim, Seon-Joo;Shin, Jae-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.240-244
    • /
    • 2013
  • In this paper, we present an improvement of a closed-form formula for mutual impedance computation. Depending on the center-to-center spacing between two rectangular microstrip patch antennas, the mutual impedance formula is separated into two parts. The formula based on synthetic asymptote and variable separation is utilized for spacings of more than 0.5 ${\lambda}_0$. When the spacing is less than 0.5 ${\lambda}_0$, an approximate formula is proposed to improve the computation for closely spaced elements. Simulation results are compared to computational results of mutual impedances and mutual coupling coefficients as functions of normalized center-to-center spacing in both E- and H-plane coupling configurations. A good agreement between simulation and computation is achieved.

Design and SAR Analysis of Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes

  • Ali, Usman;Ullah, Sadiq;Khan, Jalal;Shafi, Muhammad;Kamal, Babar;Basir, Abdul;Flint, James A;Seager, Rob D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.317-328
    • /
    • 2017
  • This paper presents design and specific absorption rate analysis of a 2.4 GHz wearable patch antenna on a conventional and electromagnetic bandgap (EBG) ground planes, under normal and bent conditions. Wearable materials are used in the design of the antenna and EBG surfaces. A woven fabric (Zelt) is used as a conductive material and a 3 mm thicker Wash Cotton is used as a substrate. The dielectric constant and tangent loss of the substrate are 1.51 and 0.02 respectively. The volume of the proposed antenna is $113{\times}96.4{\times}3mm^3$. The metamaterial surface is used as a high impedance surface which shields the body from the hazards of electromagnetic radiations to reduce the Specific Absorption Rate (SAR). For on-body analysis a three layer model (containing skin, fats and muscles) of human arm is used. Antenna employing the EBG ground plane gives safe value of SAR (i.e. 1.77W/kg<2W/kg), when worn on human arm. This value is obtained using the safe limit of 2 W/kg, averaged over 10g of tissue, specified by the International Commission of Non Ionization Radiation Protection (ICNIRP). The SAR is reduced by 83.82 % as compare to the conventional antenna (8.16 W/kg>2W/kg). The efficiency of the EBG based antenna is improved from 52 to 74 %, relative to the conventional counterpart. The proposed antenna can be used in wearable electronics and smart clothing.

Design of Fabrication of a Chip Antenna for DualB and Mobile Phone Application (듀얼밴드 휴대폰 응용을 위한 Chip 안테나 설계 및 제작)

  • Ko Young-hyuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1541-1547
    • /
    • 2005
  • In this paper, Dualband internal antenna for GSM/DSC handset is proposed. The antenna has a size of about $38mm{\times}90mm{\times}1mm$, giving a total mobile phone PCB for support and fold type patch of about $30mm{\times}8mm{\times}3.2mm$. This antenna characteriatic facilitates the fine-tuning of the two operating frequencies of 909MHz and 1762MHz in the dualband design. The measured radiation pattern in the E-plane and H-plane for operating frequencies of 909MHz and 1762MHz is compared and analyzed. The designed and fabricated two band internal antenna for GSM/DSC handset have a gain between 0dBi and 2.0dBi at all bands. Also, the electric firld distribution and directivity on human head caused by portable phone is analyzed. An analysis model is composed of a human head model and the antenna mounted on the same ground plane as portable telephone size.

Miniaturized λ/4 Folded Microstrip Antenna for Parking Monitoring Base Station System (주차장관리 시스템 기지국용 소형 λ/4 폴디드 마이크로스트립 안테나)

  • Keum, Jae-Min;Ko, Dong-Ok;Jeong, Jae-Yeop;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • In this paper, miniaturized ${\lambda}/4$ folded microstrip antennas is presented for parking monitoring base station system. The proposed antenna reduced a width of the radiating element for miniaturizing a size and we changed an aperture such as folded shape for reducing a length of the antenna by the pertubation effect by reducing a width of the antenna. Finally, the ${\lambda}/2$ length of the folded microstrip antenna to ${\lambda}/4$ folded microstrip antenna was miniaturized by reducing the length. The proposed antenna was designed to receive 425 MHz of center frequency that can be used without permission. Dimensions are $134mm{\times}143.85mm{\times}20.1mm$($0.19{\lambda}{\times}0.2{\lambda}{\times}0.028{\lambda}$, ${\lambda}$ is wavelength at 425 MHz) that are compared with basic microstrip patch antenna miniaturized 97.2%. Also, Measured -10 dB bandwidth was 2.44 MHz(0.57%). On the other hand, measured radiation patterns was 1.82 dBi at E-plane $15^{\circ}$.

Internal Microstrip DualBand Antenna (내장형 마이크로스트립 듀얼밴드 안테나)

  • Park Seong-il;Ko Young-hyuk;Lee Hyeon-jin;Lim Yeong-seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.4 s.334
    • /
    • pp.29-36
    • /
    • 2005
  • Many novel designs of planar antennas for related applications such as internal mobile phone antennas, base station antennas, WLAN or Bluetooth antennas, and so on, have been reported very recently, especially since the year 2000. In this thesis, Dualband internal antenna for GSM/DSC handset is proposed. The antenna has a size of about 38mm$\times$90mm$\times$1mm, giving a total mobile phone PCB for support and fold type Patch of about 30mm$\times$8mm$\times$3.2mm. This antenna characteristic facilitates the fine-tuning of the two operating frequencies of 909MHz and 1762MHz in this dualband design. The measured radiation pattern in the E-plane and H-plane for operating frequencies of 909MHz and 1762MHz is compared and analyzed. The designed and fabricated two band internal antenna for GSM/DSC handset have a gain between 0dBi and 2.0dBi at all bands.

Analysis of the Rectangular Microstrip Antenna with Parasitic Elements Considering the Mutual Coupling Characteristics (상호결합 특성이 고려된 기생소자를 갖는 구형 마이크로스트립 안테나 해석)

  • Son, Geon-Ho;Yun, Li-Ho;Hong, Jae-Pyo;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.12-17
    • /
    • 1991
  • In this paper, E-plane gap-coupled rectangular microstrip antennas with parasitic elements are analyzed. The mutual coupling between the radiating edges is represented as the voltage-dependent current source. The gap coupling between the patch and parasitic element is characterized with the REC(Radiating Edges-Coupling) model, and the conventional transmission line model is used to obtain the equivalent circuit of the antenna. The return loss of the rectangular microstrip antennas with short-and open-circuit parasitic elements are calculated and compared with the measured values. The theoretical values including the mutual coupling are more in agreement with the measured values than the calculated values without the mutual coupling.

  • PDF

Design of a Miniaturized Antenna for GPS using T-Shaped Slit (T자형 슬릿 구조를 이용한 GPS용 소형 안테나 설계)

  • Lee, Jong-Min;Seo, Jeong-Sik;Woo, Jong-Myung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.546-549
    • /
    • 2003
  • 본 논문에서는 GPS용 안테나의 소형화를 위해 패치 길이 방향으로 T자형 슬릿 구조를 이용하여 GPS 중심 주파수인 1.575 GHz로 안테나를 설계, 제작하였다. 선형편파의 경우, 설계 주파수에서 패치 높이 3 mm 일 때, 패치 길이 $48 mm{\times}$폭 90 mm로 평면형($84 mm{\times}90 mm$)에 비해 42.9 %의 길이 단축 효과를 얻었으며, 반사손실 -20.3 dB, -10dB 대역폭 9 MHz (0.5 %), E-면 -3dB 빔폭 $77.7^{\circ}$, H-면 -3dB 빔폭 $66.2^{\circ}$, 이득 5.3 dBd의 특성을 나타내었다. 원형편파의 경우, 설계 주파수에서 패치 크기는 $57 mm{\times}57 mm$의 정방형으로서 T자형 슬릿 길이만을 조절하여 $90^{\circ}$의 위상차를 야기시켰으며 평면형 원형편파($82 mm{\times}86.5 mm$)에 비해 54.2 %의 면적 축소 효과 및 이득 3.89 dBd, 반사손실 -28.9 dB, 축비 1.96 dB, 2dB 축비 유지 대역폭 18 MHz로 양호한 원형편파 특성을 얻었다.

  • PDF

Calculation of the Radiated E-Field from PCB by spectral Domain Analysis. (파수영역법에 의한 PCB에서의 방사전계 계산)

  • 김동일;김형근;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.61-66
    • /
    • 1999
  • It is being more and more difficult to suppress emissions from electronic products using PCB(Printed Circuit Board) to the limit. Therefore, the exact evaluation of the emission from PCB has been more important to reduce the required time and the cost at the design phase of the products, especially on board ship's equipments. This research has evaluated the emission radiated from PCB based on the theoretical approach of SDA(Spectral Domain Analysis), which is available to analyze microwave stripline, coplanar line, patch antenna, etc. According to the theoretical results, it has been clearly shown that the emission radiated from PCB is reduced as the thickness of PCB is thinner, the permittivity of PCB is higher, the length of stripline is shorter, and the frequency is lower.

  • PDF

Numerical Evaluation of Impedance Matrix of Multi-layered Structures (평면 다층구조에 관한 임피던스 행렬의 수치계산)

  • 이영순;조영기
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.117-120
    • /
    • 2000
  • When analyzing the scatting problem of multi-layered structures using closed-form Green's function, one of the main difficulties is that the numerical integrations for the evaluation of diagonal matrix elements converge slowly and are not so stable. Accordingly, even when the integration for the singularity of type e$\^$-jkr//${\gamma}$/, corresponding to the source dipole itself, is performed using such a mathod, this difficulty persists in the integration corresponding to the finite number of complex images. In order to resolve this difficulty, a new technique based upon the Gaussian quadrature in polar coordinates for the evaluation of the two-dimensional generalized exponential integral is presented. Stability of the algorithm and convergence is discussed. Performance is demonstrated for the example of a microstrip patch antenna.

  • PDF