• Title/Summary/Keyword: E-patch antenna

Search Result 85, Processing Time 0.022 seconds

Study for the Size Reduction of Microstrip Patch Antenna using Corrugation (주름 구조를 이용한 마이크로스트립 패치 안테나의 소형화에 대한 연구)

  • 송무하;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.192-201
    • /
    • 2003
  • In this paper, to reduce the size of patch, three types of 3-dimensional patch antennas which are one-directionally-corrugaged type, rectangular ring-likely corrugated type, and lattice-likely corrugated type rectangular microstrip patch antennas(MPA) are designed and fabricated at the 1.575 GHz. As the result, one-directionally corrugated rectangular MPA is reduced in the resonant length of patch by 21.4% than that of general plane MPA. -10 dB bandwidth(B.W) is 62 MHz(3.9 %) and this is broader than that(39 MHz, 2.5 %) of plane MPA by 23 MHz(1.5 %). The gain is 5.8 dBd and this is reduced by 0.9 dB than that(6.7 dBd) of plane MPA. Half power beamwidth(HPBW) is broadened by 18$^{\circ}$ than that of plane MPA in the E-plane and this is due to the reduced length of patch. For rectangular ring-likely corrugated retangular MPA, the patch size is miniaturized by 21.6 % than that of plane MPA. For lattice-likely corrugated rectangular MPA, in the linear polarization, the size of patch is miniaturized by 43.3 % than that of plane MPA. -10 dB B.W is 70 MHz(4.4 %) and this is broadened than that of plane MPA by 31 MHz(2 %). Gain is 2.2 dBd and this is smaller than that of plane MPA by 4.5 dB. HPBW is increased in both E-plane and H-plane by 22$^{\circ}$ and 13$^{\circ}$, respectively. For circular polarization, the size of patch is reduced by 41 % than that by 41 %. The axial ratio(AR) is 0.8 dB at the 1.575 GHz and the axial ratio bandwidth(ARBW) within 2 dB is 20 MHz(1.27 %) and this is increased by 10 MHz(0.63 %) than that 10 MHz(0.63 %) of plane MPA. From all the results above, it is conformed that the proposed antenna has merit in size reduction of patch and in the input impedance B.W, and is more profitable in many application than the general plane type MPA.

High-Gain Fabry-Pérot Cavity Antenna with Planar Metamaterial Superstrate for Wibro Base Station Antennas (평판형 메타 물질로 구성된 상부 덮개를 갖는 와이브로 기지국용 고 이득 Fabry-Pérot 공진기 안테나)

  • Kim, Dong-Ho;Choi, Jae-Ick
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1367-1374
    • /
    • 2008
  • A new high-gain Fabry-$P{\acute{e}}rot$ cavity antenna for wireless broadband internet(Wibro) base station antennas, which is covered with metamaterial superstrate presenting simultaneous negative values of permittivity and permeability, is proposed. To facilitate the fabrication process using the printed circuit board(PCB) technology of today, a new planar-type metamaterial superstrate is designed, which shows negative and low positive values of a refractive index near the Wibro service frequency band. And the principle of antenna gain enhancement is analyzed from the two different view points of effectively low refractive index and of the Fabry-$P{\acute{e}}rot$ resonance condition. Single square patch antenna is used as a feeder. The separation distance is determined by considering the reflection phases of the metamaterial superstrate and the substrate satisfying Fabry-$P{\acute{e}}rot$ resonance condition, respectively. Comparison between the prediction and the measurement shows good agreement, which verifies the validity of our design approach.

The Design of Broadband PIFA for Hand-Held Mobile Phones (이동통신 광대역 PIFA 안테나 설계 및 해석)

  • 김상준;이대헌;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.855-862
    • /
    • 2003
  • This paper suggests the PIFA structure modified antenna in which short-circuit plate is located between planar element and ground plane, in order to solve the problem of narrow band of existing internal antenna, PIFA. It is also suggested that internal antenna has the perturbation in the patch to broaden the frequency bandwidth. It is possible that the antenna is installed into the mobile telephone with a low profile condition(h=0.015 λ) to use internally, and acquired desired bandwidth(5.2 %) through double resonance structure, remodeling the PIFA that is already well-known as an internal antenna. This paper investigated how characteristic is affected by the feeding point(Yf, Zf), short strip plate(Zs), short strip width(Ws), perturbation width(w), length(d), short plate height(h), dielectric($\varepsilon$$\_$r/) to be slim type antenna. It is compared with existing PIFA bandwidth, and is suggested pattern as the H.E plane. It is simulated using the Microwave Studio of the CST Inc. based on FIM(Finite Integration Method) method and analyzed antenna characteristic following the variation each parameters. The result proved the practical use of PIFA antenna by comparing the measured and simulated data of the antenna.

Design of a Dual-band Snowflake-Shaped Microstrip patch Antenna With Short-pin For 5.2/5.8 GHz WLAN System (WLAN System을 위한 Short-Pin을 갖는 Snowflake 모양의 Dual-band(5.2/5.8 GBz) 마이크로스트립 패치 안테나 설계 및 제작)

  • Song, Jun-Sung;Choi, Sun-Ho;Lee, Hwa-Choon;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4A
    • /
    • pp.324-329
    • /
    • 2009
  • In this paper, a novel Snowflake-shaped microstrip patch antenna for application in the WLAN(5.2/5.8GHz) band is designed and fabricated. The size of antenna is $21.2{\times}16mm^2$ and substrate is used Taconic-RF30. To obtain sufficient bandwidth in Return loss <-10dB and dual resonance characteristic, the Short-pin is inserted on the patch and the coaxial probe source is used. The measured results of fabricated antenna show 220MHz and 135MHz bandwidth in Return loss <-10dB referenced to the WLAN(5.2/5.8GHz) band. The measured antenna gain is $4.7{\sim}6.9dBi$ in the WLAN(5.2/5.8GHz) band. The experimental 3-dB beam width in I-plane and H-plane are $73.2^{\circ}/82.75^{\circ}$ for 5.1500Hz, $74.56^{\circ}/83.63^{\circ}$ for 5.3500Hz, and $86.24^{\circ}/85.15^{\circ}$ for 5.7850Hz, respectively.

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu;Chung, Jae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2004-2010
    • /
    • 2018
  • We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.

3-Dimensinal Microstrip Patch Antenna for Miniaturization (소형화를 위한 3차원 구조마이크로스트립 패치 안테나)

  • 송무하;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.157-167
    • /
    • 2003
  • In this paper, to reduce the resonant length of patch, microstrip patch antenna of linear polarization which is suppressed at two radiation edges is designed and fabricated at the frequency of 1.575 GHz. The result is like that the resonant length of patch is 45 mm and the length reduction effect is 43.8 % when it is compared with that(80 mm) of plane type. The gain is 4.4 dBd and -3 dB beamwidths are 112$^{\circ}$ and 66$^{\circ}$ in the E-plane and H-plane, respectively. Also, to reduce the size of patch, microstrip patch antennas those are suppressed at four radiating comers are designed and fabricated at the same frequency in the linear and circular polarization, respectively. For linear polarization, at the 1.2 of width/length(W/L) ratio, the patch area is 53 mm $\times$ 63.6 mm and the size reduction effect is 56.1 % when compared with that(80 mm $\times$ 96 mm) of plane type. The gain is 4.3 dBd and the -3 dB beamwidths are 120$^{\circ}$ and 78$^{\circ}$ in the E-plane and H-plane, respectively. For circular polarization, the patch size(54.2 mm $\times$ 61.5 mm) is reduced by 47.2 % than that(76 mm $\times$ 83 mm) of plane type. -3 dB beamwidth of horizontal polarization in the z-x plane and vortical polarization in the y-z plane are 108$^{\circ}$ and 93$^{\circ}$, respectively and this means the increasement in both planes by 52$^{\circ}$ and 27$^{\circ}$ than those of plane type. The maximum gain is 2.5 dBd in the horizontal polarization in the z-x plane. Axial ratio is 1.5 dB at 1.575 GHz and the 2 dB axial ratio bandwidth(ARBW) is 20 MHz(1.3 %).

Effect of Finite Substrate Size on the Radiation Characteristics of H-plane Linear Array Antennas (유한한 기판 크기가 H-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.39-49
    • /
    • 2013
  • The effect of the finite substrate size on the radiation characteristics of H-plane linear microstrip array antennas is investigated. The radiation characteristics versus scan angle are systematically analyzed for 5-element H-plane linear array antennas with various substrate sizes and element spacings for the substrates with different dielectric constants. The distance between the antenna center and the substrate edge on the E-plane for the enhancement of the radiation characteristics of the array antenna is presented.

The Design of 800MHz Band Repeater Antenna for Ship Base Station Application (선박기지국 응용을 위한 800MHz 대역 중계기용 안테나 설계)

  • Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.219-222
    • /
    • 2007
  • In this paper, we have designed microstrip antenna of 800[MHz] band. It will be able to integrate TRS(Trunked Radio System), GSM(Global System for Mobile telecommunication) band including the CDMA(Code Division Multiple Access) band. we designed repeater and a base station antenna which is possible at the ship and marine of safety. It is improves a narrow bandwidth problem of microstrip antenna. It had L-shaped feeding structure at a rectangular patch and added the parallel L-slot that used a duplex resonance effect. Also for the improvement of profit the stack with the perpendicular. Designed frequency bandwith(VSWR 2:1) of the antenna showed good characteristic of 789${\sim}$1046[MHz] to 292[MHz](36%). Also the E-plan and H-plan all profit 6.4[dBi] above, the 3[dB] beam width showed the characteristic over the E-plan $44.7^{\circ} and H-plan $61.8^{\circ} to be improved.

  • PDF

Design and Fabrication of Inset Fed Patch Antenna Loaded with CSLR (CSLR을 갖는 인셋 급전 패치 안테나 설계 및 제작)

  • Son, Hyeok-Woo;Kim, Byung-Mun;Park, Jin-Taek;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.549-556
    • /
    • 2015
  • In this paper, design and fabrication for inset fed microstrip patch antennas applied to the $3{\times}3$ array CSLR and eight CSLR, respectively, to the ground plane are studied. The theoretical results are compared to the experimental results for the return loss and radiation pattern. For 'CSLR 09' antenna, the theoretical result for the resonant frequency and the return loss are 2.82 GHz and - 25.35 dB, respectively. The experimental results are obtained for a 2.885 GHz, -30.72 dB. Theoretical results for the resonant frequency and the return loss of the 'CSLR 08' antenna are 2.82 GHz, -16.77 dB, respectively, and the experimental results are obtained for a 2.885 GHz, -14.90 dB. In addition, E-plane and H-plane radiation patterns in comparison with designed and fabricated antennas are in good agreement.

A Small Composite Right/Left-Handed Transmission Line Metamaterial Antenna Using a Magneto-Dielectric Material (Magneto-Dielectric Material을 이용한 소형 Composite Right/Left-Handed Transmission Line Metamaterial 안테나)

  • Jang, Kyung-Duk;Kim, Jae-Hee;Kim, Gi-Ho;Seong, Won-Mo;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.223-230
    • /
    • 2008
  • A CRLH-TL based compact metamaterial antenna on a magneto-dielectric material is proposed. The proposed antenna is composed of two patches and vias, which is loaded by a magneto-dielectric material constructed by SRRs. The characteristic of SRRs is studied, and the size reduction of the antenna by using the magneto-dielectric material is confirmed. The simulated resonant frequency of the antenna has showed a decrease of 7.13 % at - 1st-order resonant mode, and 23.9 % at zeroth-order resonant mode. A zeroth-order resonant antenna is fabricated and measured, which has a resonant frequency of 1.888 GHz, a bandwidth of 0.48 %, a gain of 0.534 dBi, and an efficiency of 51.7 %.