This study was carried out to find new anti-tumor agent producing microbe and to characterize the anti-tumor agent produced from the microbe. Purified compound that has a high cytotoxicity against tumor cell-lines could be obtained from the broth culture filtrates of Streptomyces sp.409 strain isolated from soil in Korea. The in vitro cytotoxicity the in vivo evaluation of acute toxicity the safety assessment of the anti-tumor compounds and the taxonomic characteristics of the anti-tumor agent were measured. The antitumor compound 1 and 2 were obtained from the broth culture filtrates of Streptomyces sp.409 strain. The cytotoxicity of the compound 1 against tumor cell-line P388D$_1$ showed almost 4.5 times higher than that of adriamycin. However in the cytotoxicity against normal cell line Vero E6, adriamycin showed adversely 4 times higher than the compound 1 ($IC_{50}$/ value: 228.7 $\mu\textrm{g}$/$m\ell$). In comparison study with compound 1 and compound 2 in the in vitro cytotoxin productivity against tumor cell lines, $IC_{50}$/ value of the compound 1 was 0.25 $\mu\textrm{g}$/$m\ell$ in tumor cell line P388D$_1$and 0.53 $\mu\textrm{g}$/$m\ell$ in tumor cell-line L1210, and that of the compound 2 was 7.18 $\mu\textrm{g}$/$m\ell$ and 35.71 $\mu\textrm{g}$/$m\ell$, respectively; LD$_{50}$ value of the compound 1 in the in vivo acute toxicity in mice was 22.62 $\mu\textrm{g}$/kg body weight. These results suggest that compound 1 purified from Streptomyces sp. 409 has anti-tumor activity and will be developed as an anti-tumor drug.g.
In the present study, a few of recently developed geostatistical models are comparatively studied. The models are two-point statistics based sequential indicator simulation (SISIM) and generalized coupled Markov chain (GCMC), multi-point statistics single normal equation simulation (SNESIM), and object based model of FLUVSIM (fluvial simulation) that predicts structures of target object from the provided geometric information. Out of the models, SNESIM and FLUVSIM require additional information other than conditioning data such as training map and geometry, respectively, which generally claim demanding additional resources. For the comparative studies, three-dimensional fluvial reservoir model is developed considering the genetic information and the samples, as input data for the models, are acquired by mimicking realistic sampling (i.e. random sampling). For SNESIM and FLUVSIM, additional training map and the geometry data are synthesized based on the same information used for the objective model. For the comparisons of the predictabilities of the models, two different measures are employed. In the first measure, the ensemble probability maps of the models are developed from multiple realizations, which are compared in depth to the objective model. In the second measure, the developed realizations are converted to hydrogeologic properties and the groundwater flow simulation results are compared to that of the objective model. From the comparisons, it is found that the predictability of GCMC outperforms the other models in terms of the first measure. On the other hand, in terms of the second measure, the both predictabilities of GCMC and SNESIM are outstanding out of the considered models. The excellences of GCMC model in the comparisons may attribute to the incorporations of directional non-stationarity and the non-linear prediction structure. From the results, it is concluded that the various geostatistical models need to be comprehensively considered and comparatively analyzed for appropriate characterizations.
Background: Hyperbaric gaseous cryotherapy (HGC) is a type of cryotherapy used in human medicine for rehabilitation after orthopedic surgeries. Because HGC is known to reduce acute or chronic pain, research is needed to prove its effectiveness in veterinary medicine. Objectives: To compare the effects of HGC between the HGC treatment group and the nontreatment (NT) group on postoperative swelling, range of motion, lameness score, postoperative pain, and kinetic measurements after stifle joint surgery in dogs. Methods: Dogs were randomized in an HGC group or NT groups. In the HGC group, HGC was applied once a day for a total of 2 days after surgery. All parameters were measured postoperatively and at 1, 2, 10, and 28 days after surgery. Results: Twenty dogs were enrolled: 10 in the HGC group and 10 in the NT group. Soft tissue swelling was not significantly different between groups at any time point. In the HGC group, pain scores decreased significantly 24 h after surgery and 48 h after surgery. Dogs in the HGC group showed a significantly decreased lameness and improvement for all kinetic measurements beginning 48 h after surgery. In addition, the HGC group indicated a significant increase in range of motion as compared with the NT group at 28 days after surgery. Conclusions: HGC plays a powerful role in decreasing initial postoperative pain. Furthermore, the improvement in pain affects the use of the operated limb, and the continued use of the limb eventually assists in the quick recovery of normal function.
Kim, Geon Min;Sohn, Hee Ju;Choi, Won Seok;Sohn, Uy Dong
The Korean Journal of Physiology and Pharmacology
/
v.25
no.6
/
pp.507-515
/
2021
Postoperative ileus (POI), a symptom that occurs after abdominal surgery, reduces gastrointestinal motility. Although its mechanism is unclear, POI symptoms are known to be caused by inflammation 6 to 72 h after surgery. As proton pump inhibitors exhibit protective effect against acute inflammation, the purpose of this study was to determine the effect of ilaprazole on a POI rat model. POI was induced in rats by abdominal surgery. Rats were divided into six groups: control: normal rat + 0.5% CMC-Na, vehicle: POI rat + 0.5% CMC-Na, mosapride: POI rat + mosapride 2 mg/kg, ilaprazole 1 mg/kg: POI rat + ilaprazole 1 mg/kg, ilaprazole 3 mg/kg: POI rat + ilaprazole 3 mg/kg, and ilaprazole 10 mg/kg: POI rat + ilaprazole 10 mg/kg. Gastrointestinal motility was confirmed by measuring gastric emptying (GE) and gastrointestinal transit (GIT). In the small intestine, inflammation was confirmed by measuring TNF-α and IL-1β; oxidative stress was confirmed by SOD, GSH, and MDA levels; and histological changes were observed by H&E staining. Based on the findings, GE and GIT were decreased in the vehicle group and improved in the ilaprazole 10 mg/kg group. In the ilaprazole 10 mg/kg group, TNF-α and IL-1β levels were decreased, SOD and GSH levels were increased, and MDA levels were decreased. Histological damage was also reduced in the ilaprazole-treated groups. These findings suggest that ilaprazole prevents the decrease in gastrointestinal motility, a major symptom of postoperative ileus, and reduces inflammation and oxidative stress.
El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
Nuclear Engineering and Technology
/
v.53
no.10
/
pp.3275-3285
/
2021
A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.
Cho, Eunjin;Kim, Minjun;Manjula, Prabuddha;Cho, Sung Hyun;Seo, Dongwon;Lee, Seung-Sook;Lee, Jun Heon
Journal of Animal Science and Technology
/
v.63
no.4
/
pp.751-758
/
2021
The recessive white (locus c) phenotype observed in chickens is associated with three alleles (recessive white c, albino ca, and red-eyed white cre) and causative mutations in the tyrosinase (TYR) gene. The recessive white mutation (c) inhibits the transcription of TYR exon 5 due to a retroviral sequence insertion in intron 4. In this study, we genotyped and sequenced the insertion in TYR intron 4 to identify the mutation causing the unusual white plumage of Yeonsan Ogye chickens, which normally have black plumage. The white chickens had a homozygous recessive white genotype that matched the sequence of the recessive white type, and the inserted sequence exhibited 98% identity with the avian leukosis virus ev-1 sequence. In comparison, brindle and normal chickens had the homozygous color genotype, and their sequences were the same as the wild-type sequence, indicating that this phenotype is derived from other mutation(s). In conclusion, white chickens have a recessive white mutation allele. Since the size of the sample used in this study was limited, further research through securing additional samples to perform validation studies is necessary. Therefore, after validation studies, a selection system for conserving the phenotypic characteristics and genetic diversity of the population could be established if additional studies to elucidate specific phenotype-related genes in Yeonsan Ogye are performed.
Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.
Background: New-generation adjuvants for foot-and-mouth disease virus (FMDV) vaccines can improve the efficacy of existing vaccines. Chinese medicinal herb polysaccharide possesses better promoting effects. Objectives: In this study, the aqueous extract from Artemisia rupestris L. (AEAR), an immunoregulatory crude polysaccharide, was utilized as the adjuvant of inactivated FMDV vaccine to explore their immune regulation roles. Methods: The mice in each group were subcutaneously injected with different vaccine formulations containing inactivated FMDV antigen adjuvanted with three doses (low, medium, and high) of AEAR or AEAR with ISA-206 adjuvant for 2 times respectively in 1 and 14 days. The variations of antibody level, lymphocyte count, and cytokine secretion in 14 to 42 days after first vaccination were monitored. Then cytotoxic T lymphocyte (CTL) response and antibody duration were measured after the second vaccination. Results: AEAR significantly induced FMDV-specific antibody titers and lymphocyte activation. AEAR at a medium dose stimulated Th1/Th2-type response through interleukin-4 and interferon-γ secreted by CD4+ T cells. Effective T lymphocyte counts were significantly elevated by AEAR. Importantly, the efficient CTL response was remarkably provoked by AEAR. Furthermore, AEAR at a low dose and ISA-206 adjuvant also synergistically promoted immune responses more significantly in immunized mice than those injected with only ISA-206 adjuvant and the stable antibody duration without body weight loss was 6 months. Conclusions: These findings suggested that AEAR had potential utility as a polysaccharide adjuvant for FMDV vaccines.
Naqvi, A.;Platt, E.;Jitsumura, M.;Evans, M.;Coleman, M.;Smolarek, S.
Annals of Coloproctology
/
v.34
no.6
/
pp.312-316
/
2018
Purpose: Anemia is associated with poor treatment results for a variety of cancers. The effect of low hemoglobin levels on long-term outcomes after the treatment of patients with an anal squamous cell carcinoma (SCC) remains unclear. For that reason, this study aimed to investigate the effect of anemia on treatment outcomes following chemoradiation for an anal SCC. Methods: This was a retrospective study of all patients who underwent curative treatment for an anal SCC between 2009 and 2015 at 2 trusts in the United Kingdom. Data were collated from prospectively collected cancer databases and were cross-checked with operating-room records and records in the hospitals' patient management systems. Results: We identified 103 patients with a median age of 63 years (range, 36-84 years). The median overall survival was 39 months (range, 9-90 months), and the disease-free survival was 36 months (range, 2-90 months). During the follow-up period, 16.5% patients died and 13.6% patients developed recurrence. Twenty-two people were anemic prior to treatment, with a female preponderance (20 of 22). No differences in disease-free survival (P = 0.74) and overall survival (P = 0.12) were noted between patients with anemia and those with normal hemoglobin levels. On regression the analysis, the combination of anemia, the presence of a defunctioning colostomy, lymph-node involvement and higher tumor stage correlated with poor overall survival. Conclusion: In this study, anemia did not influence disease-free survival or overall survival. We suggest that the interaction between anemia and survival is more complex than previously demonstrated and potentially reliant on other coexisting factors.
Background: Light-emitting diodes curing unit (LCU), which emit blue light, is used for polymerization of composite resins in many dentistry. Although the use of LCU for light-cured composite resin polymerization is considered safe, it is still controversial whether it can directly or indirectly have harmful biological influences on oral tissues. The aim of this study was to elucidate the biological effects of LCU in wavelengths ranging from 440 to 490 nm, on the cell viability and secretion of inflammatory cytokines in MDPC-23 odontoblastic cells and inflammatory-induced MDPC-23 cells by lipopolysaccharide (LPS). Methods: The MTT assay and observation using microscope were performed on MDPC-23 cells to investigate the cell viability and cytotoxic effects on LCU irradiation. Results: MDPC-23 cells and LPS stimulated MDPC-23 cells were found to have no effects on cell viability and cell morphology in the LCU irradiation. Nitric oxide (NO) and prostaglandin $E_2$ which are the pro-inflammatory mediators, and interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) which are the proinflammatory cytokines were significantly increased in MCPD-23 cells after LCU irradiation as time increased in comparison with the control. LCU irradiation has the potential to induce inflammation or biological damages in normal dental tissues, including MDPC-23 cells. Conclusion: Therefore, it is necessary to limit the use of LCU except for the appropriate dose and irradiation time. In addition, LCU irradiation of inflammatory-induced MDPC-23 cells by LPS was reduced the secretion of NO compared to the LPS alone treatment group and was significantly reduced the secretion of TNF-${\alpha}$ in all the time groups. Therefore, LCU application in LPS stimulated MDPC-23 odontoblastic cells has a photodynamic therapy like effect as well as inflammation relief.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.