• Title/Summary/Keyword: E-learning of engineering department

Search Result 329, Processing Time 0.027 seconds

E-Learning Content Search Support System Design for Self-Directed Learning (자기주도학습을 위한 이러닝 콘텐츠 검색 지원 시스템 설계)

  • Yong, Sung-Jung;Kim, Yu-Doo;Moon, Il-Young
    • Journal of Practical Engineering Education
    • /
    • v.12 no.1
    • /
    • pp.73-83
    • /
    • 2020
  • Recently, the importance of self-directed learning has emerged in the fields of public education, private education, lifelong education, and vocational training education, in which learners can actively cope with knowledge in an infusion-oriented way. However, there are various theoretical knowledge such as concepts and strategies for self-directed learning, but the situation is insufficient for a system where learners can easily receive content in the academic field they want, depending on the actual self-directed learning operation plan or learning area. Therefore, since it is important to provide various learning content in this paper, we utilize text mining techniques to obtain appropriate information and refine and categorize the meaning. On-line, they want to study a system that provides a variety of content in the academic field that learners are trying to acquire.

A Structure of Personalized e-Learning System Using On/Off-line Mixed Estimations Based on Multiple-Choice Items

  • Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.5 no.1
    • /
    • pp.51-55
    • /
    • 2009
  • In this paper, we present a structure of personalized e-Learning system to study for a test formalized by uniform multiple-choice using on/off line mixed estimations as is the case of Driver :s License Test in Korea. Using the system a candidate can study toward the license through the Internet (and/or mobile instruments) within the personalized concept based on IRT(item response theory). The system accurately estimates user's ability parameter and dynamically offers optimal evaluation problems and learning contents according to the estimated ability so that the user can take possession of the license in shorter time. In order to establish the personalized e-Learning concepts, we build up 3 databases and 2 agents in this system. Content DB maintains learning contents for studying toward the license as the shape of objects separated by concept-unit. Item-bank DB manages items with their parameters such as difficulties, discriminations, and guessing factors, which are firmly related to the learning contents in Content DB through the concept of object parameters. User profile DB maintains users' status information, item responses, and ability parameters. With these DB formations, Interface agent processes user ID, password, status information, and various queries generated by learners. In addition, it hooks up user's item response with Selection & Feedback agent. On the other hand, Selection & Feedback agent offers problems and content objects according to the corresponding user's ability parameter, and re-estimates the ability parameter to activate dynamic personalized learning situation and so forth.

Prediction of Significant Wave Height in Korea Strait Using Machine Learning

  • Park, Sung Boo;Shin, Seong Yun;Jung, Kwang Hyo;Lee, Byung Gook
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.336-346
    • /
    • 2021
  • The prediction of wave conditions is crucial in the field of marine and ocean engineering. Hence, this study aims to predict the significant wave height through machine learning (ML), a soft computing method. The adopted metocean data, collected from 2012 to 2020, were obtained from the Korea Institute of Ocean Science and Technology. We adopted the feedforward neural network (FNN) and long-short term memory (LSTM) models to predict significant wave height. Input parameters for the input layer were selected by Pearson correlation coefficients. To obtain the optimized hyperparameter, we conducted a sensitivity study on the window size, node, layer, and activation function. Finally, the significant wave height was predicted using the FNN and LSTM models, by varying the three input parameters and three window sizes. Accordingly, FNN (W48) (i.e., FNN with window size 48) and LSTM (W48) (i.e., LSTM with window size 48) were superior outcomes. The most suitable model for predicting the significant wave height was FNN(W48) owing to its accuracy and calculation time. If the metocean data were further accumulated, the accuracy of the ML model would have improved, and it will be beneficial to predict added resistance by waves when conducting a sea trial test.

Discriminant Metric Learning Approach for Face Verification

  • Chen, Ju-Chin;Wu, Pei-Hsun;Lien, Jenn-Jier James
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.742-762
    • /
    • 2015
  • In this study, we propose a distance metric learning approach called discriminant metric learning (DML) for face verification, which addresses a binary-class problem for classifying whether or not two input images are of the same subject. The critical issue for solving this problem is determining the method to be used for measuring the distance between two images. Among various methods, the large margin nearest neighbor (LMNN) method is a state-of-the-art algorithm. However, to compensate the LMNN's entangled data distribution due to high levels of appearance variations in unconstrained environments, DML's goal is to penalize violations of the negative pair distance relationship, i.e., the images with different labels, while being integrated with LMNN to model the distance relation between positive pairs, i.e., the images with the same label. The likelihoods of the input images, estimated using DML and LMNN metrics, are then weighted and combined for further analysis. Additionally, rather than using the k-nearest neighbor (k-NN) classification mechanism, we propose a verification mechanism that measures the correlation of the class label distribution of neighbors to reduce the false negative rate of positive pairs. From the experimental results, we see that DML can modify the relation of negative pairs in the original LMNN space and compensate for LMNN's performance on faces with large variances, such as pose and expression.

Method of an Assistance for Evaluation of Learning using Expression Recognition based on Deep Learning (심층학습 기반 표정인식을 통한 학습 평가 보조 방법 연구)

  • Lee, Ho-Jung;Lee, Deokwoo
    • Journal of Engineering Education Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2020
  • This paper proposes the approaches to the evaluation of learning using concepts of artificial intelligence. Among various techniques, deep learning algorithm is employed to achieve quantitative results of evaluation. In particular, this paper focuses on the process-based evaluation instead of the result-based one using face expression. The expression is simply acquired by digital camera that records face expression when students solve sample test problems. Face expressions are trained using convolutional neural network (CNN) model followed by classification of expression data into three categories, i.e., easy, neutral, difficult. To substantiate the proposed approach, the simulation results show promising results, and this work is expected to open opportunities for intelligent evaluation system in the future.

A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra

  • Galib, S.M.;Bhowmik, P.K.;Avachat, A.V.;Lee, H.K.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4072-4079
    • /
    • 2021
  • This article presents a study on the state-of-the-art methods for automated radioactive material detection and identification, using gamma-ray spectra and modern machine learning methods. The recent developments inspired this in deep learning algorithms, and the proposed method provided better performance than the current state-of-the-art models. Machine learning models such as: fully connected, recurrent, convolutional, and gradient boosted decision trees, are applied under a wide variety of testing conditions, and their advantage and disadvantage are discussed. Furthermore, a hybrid model is developed by combining the fully-connected and convolutional neural network, which shows the best performance among the different machine learning models. These improvements are represented by the model's test performance metric (i.e., F1 score) of 93.33% with an improvement of 2%-12% than the state-of-the-art model at various conditions. The experimental results show that fusion of classical neural networks and modern deep learning architecture is a suitable choice for interpreting gamma spectra data where real-time and remote detection is necessary.

Analysis on the Characteristics of Cognitive & Affective Learning Style of Engineering University Students (공과대학생의 인지적.정의적 학습양식 특성 분석)

  • Kim, Eun Jeong
    • Journal of Engineering Education Research
    • /
    • v.17 no.6
    • /
    • pp.20-29
    • /
    • 2014
  • The purpose of this study is to analyze the traits on the cognitive and affective learning style of university students. CALSIU(The Cognitive & Affective Learning Style Inventory for University School Students) by Kim, E. J. was modified for applying to university students and performed with 399 university students from three universities in Daejeon and Chungnam. Statistical analysis done in this study were ANOVA and Scheffe's test. Findings of the study are as follows : First, the students with high academic achievements have intuitive perception type, whole processing type, and deep storage & recall type. Secondly, the students with low academic achievement have strong non-academic learning type. Third, interaction attitude of affective learning styles is the important element to determine their academic achievement. The students with independent type get high academic achievements. Therefore, instructor should consider the learning styles of students, and it should be used to improve their teaching & learning strategy for better academic achievements of university students.

Automated Construction Activities Extraction from Accident Reports Using Deep Neural Network and Natural Language Processing Techniques

  • Do, Quan;Le, Tuyen;Le, Chau
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.744-751
    • /
    • 2022
  • Construction is among the most dangerous industries with numerous accidents occurring at job sites. Following an accident, an investigation report is issued, containing all of the specifics. Analyzing the text information in construction accident reports can help enhance our understanding of historical data and be utilized for accident prevention. However, the conventional method requires a significant amount of time and effort to read and identify crucial information. The previous studies primarily focused on analyzing related objects and causes of accidents rather than the construction activities. This study aims to extract construction activities taken by workers associated with accidents by presenting an automated framework that adopts a deep learning-based approach and natural language processing (NLP) techniques to automatically classify sentences obtained from previous construction accident reports into predefined categories, namely TRADE (i.e., a construction activity before an accident), EVENT (i.e., an accident), and CONSEQUENCE (i.e., the outcome of an accident). The classification model was developed using Convolutional Neural Network (CNN) showed a robust accuracy of 88.7%, indicating that the proposed model is capable of investigating the occurrence of accidents with minimal manual involvement and sophisticated engineering. Also, this study is expected to support safety assessments and build risk management systems.

  • PDF

Injection Process Yield Improvement Methodology Based on eXplainable Artificial Intelligence (XAI) Algorithm (XAI(eXplainable Artificial Intelligence) 알고리즘 기반 사출 공정 수율 개선 방법론)

  • Ji-Soo Hong;Yong-Min Hong;Seung-Yong Oh;Tae-Ho Kang;Hyeon-Jeong Lee;Sung-Woo Kang
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.1
    • /
    • pp.55-65
    • /
    • 2023
  • Purpose: The purpose of this study is to propose an optimization process to improve product yield in the process using process data. Recently, research for low-cost and high-efficiency production in the manufacturing process using machine learning or deep learning has continued. Therefore, this study derives major variables that affect product defects in the manufacturing process using eXplainable Artificial Intelligence(XAI) method. After that, the optimal range of the variables is presented to propose a methodology for improving product yield. Methods: This study is conducted using the injection molding machine AI dataset released on the Korea AI Manufacturing Platform(KAMP) organized by KAIST. Using the XAI-based SHAP method, major variables affecting product defects are extracted from each process data. XGBoost and LightGBM were used as learning algorithms, 5-6 variables are extracted as the main process variables for the injection process. Subsequently, the optimal control range of each process variable is presented using the ICE method. Finally, the product yield improvement methodology of this study is proposed through a validation process using Test Data. Results: The results of this study are as follows. In the injection process data, it was confirmed that XGBoost had an improvement defect rate of 0.21% and LightGBM had an improvement defect rate of 0.29%, which were improved by 0.79%p and 0.71%p, respectively, compared to the existing defect rate of 1.00%. Conclusion: This study is a case study. A research methodology was proposed in the injection process, and it was confirmed that the product yield was improved through verification.

Learning Deep Representation by Increasing ConvNets Depth for Few Shot Learning

  • Fabian, H.S. Tan;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.75-81
    • /
    • 2019
  • Though recent advancement of deep learning methods have provided satisfactory results from large data domain, somehow yield poor performance on few-shot classification tasks. In order to train a model with strong performance, i.e. deep convolutional neural network, it depends heavily on huge dataset and the labeled classes of the dataset can be extremely humongous. The cost of human annotation and scarcity of the data among the classes have drastically limited the capability of current image classification model. On the contrary, humans are excellent in terms of learning or recognizing new unseen classes with merely small set of labeled examples. Few-shot learning aims to train a classification model with limited labeled samples to recognize new classes that have neverseen during training process. In this paper, we increase the backbone depth of the embedding network in orderto learn the variation between the intra-class. By increasing the network depth of the embedding module, we are able to achieve competitive performance due to the minimized intra-class variation.