• Title/Summary/Keyword: E-learning of engineering department

Search Result 334, Processing Time 0.032 seconds

Development of Intelligent Learning Tool based on Human eyeball Movement Analysis for Improving Foreign Language Competence (외국어 능력 향상을 위한 사용자 안구운동 분석 기반의 지능형 학습도구 개발)

  • Shin, Jihye;Jang, Young-Min;Kim, Sangwook;Mallipeddi, Rammohan;Bae, Jungok;Choi, Sungmook;Lee, Minho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.153-161
    • /
    • 2013
  • Recently, there has been a tremendous increase in the availability of educational materials for foreign language learning. As part of this trend, there has been an increase in the amount of electronically mediated materials available. However, conventional educational contents developed using computer technology has provided typically one-way information, which is not the most helpful thing for users. Providing the user's convenience requires additional off-line analysis for diagnosing an individual user's learning. To improve the user's comprehension of texts written in a foreign language, we propose an intelligent learning tool based on the analysis of the user's eyeball movements, which is able to diagnose and improve foreign language reading ability by providing necessary supplementary aid just when it is needed. To determine the user's learning state, we correlate their eye movements with findings from research in cognitive psychology and neurophysiology. Based on this, the learning tool can distinguish whether users know or do not know words when they are reading foreign language sentences. If the learning tool judges a word to be unknown, it immediately provides the student with the meaning of the word by extracting it from an on-line dictionary. The proposed model provides a tool which empowers independent learning and makes access to the meanings of unknown words automatic. In this way, it can enhance a user's reading achievement as well as satisfaction with text comprehension in a foreign language.

Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors

  • Chahnasir, E. Sadeghipour;Zandi, Y.;Shariati, M.;Dehghani, E.;Toghroli, A.;Mohamad, E. Tonnizam;Shariati, A.;Safa, M.;Wakil, K.;Khorami, M.
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.413-424
    • /
    • 2018
  • The factors affecting the shear strength of the angle shear connectors in the steel-concrete composite beams can play an important role to estimate the efficacy of a composite beam. Therefore, the current study has aimed to verify the output of shear capacity of angle shear connector according to the input provided by Support Vector Machine (SVM) coupled with Firefly Algorithm (FFA). SVM parameters have been optimized through the use of FFA, while genetic programming (GP) and artificial neural networks (ANN) have been applied to estimate and predict the SVM-FFA models' results. Following these results, GP and ANN have been applied to develop the prediction accuracy and generalization capability of SVM-FFA. Therefore, SVM-FFA could be performed as a novel model with predictive strategy in the shear capacity estimation of angle shear connectors. According to the results, the Firefly algorithm has produced a generalized performance and be learnt faster than the conventional learning algorithms.

E-quality control: A support vector machines approach

  • Tseng, Tzu-Liang (Bill);Aleti, Kalyan Reddy;Hu, Zhonghua;Kwon, Yongjin (James)
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.91-101
    • /
    • 2016
  • The automated part quality inspection poses many challenges to the engineers, especially when the part features to be inspected become complicated. A large quantity of part inspection at a faster rate should be relied upon computerized, automated inspection methods, which requires advanced quality control approaches. In this context, this work uses innovative methods in remote part tracking and quality control with the aid of the modern equipment and application of support vector machine (SVM) learning approach to predict the outcome of the quality control process. The classifier equations are built on the data obtained from the experiments and analyzed with different kernel functions. From the analysis, detailed outcome is presented for six different cases. The results indicate the robustness of support vector classification for the experimental data with two output classes.

Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice

  • Weon, Jin Bae;Jung, Youn Sik;Ma, Choong Je
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.298-304
    • /
    • 2016
  • Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

Design and Implementation of Education Contents for Prevention of Child Sexual Violence (아동 성폭력 예방을 위한 교육 콘텐츠의 설계 및 구현)

  • Kim, Hee-joo;Shin, Hye-won;Lee, yoon-ji;Won, Hye-mi;Park, Su e;Park, Jung Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.179-181
    • /
    • 2017
  • In this paper, we propose the contents of the visual content of the child's own boundaries and implement the contents based on active learning using touch method. The images consist of four modules, each of which consists of content developments, learning concepts, and learning content. The notion of sexual violence is also aimed at fostering awareness that sexual violence is also an extension of the child's safety. Moreover, the learning content of a learning game improves learning outcomes by receiving a 'compliment' if the game succeeds and receives a 'reward' on the game.

  • PDF

Recognition of Multi Label Fashion Styles based on Transfer Learning and Graph Convolution Network (전이학습과 그래프 합성곱 신경망 기반의 다중 패션 스타일 인식)

  • Kim, Sunghoon;Choi, Yerim;Park, Jonghyuk
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • Recently, there are increasing attempts to utilize deep learning methodology in the fashion industry. Accordingly, research dealing with various fashion-related problems have been proposed, and superior performances have been achieved. However, the studies for fashion style classification have not reflected the characteristics of the fashion style that one outfit can include multiple styles simultaneously. Therefore, we aim to solve the multi-label classification problem by utilizing the dependencies between the styles. A multi-label recognition model based on a graph convolution network is applied to detect and explore fashion styles' dependencies. Furthermore, we accelerate model training and improve the model's performance through transfer learning. The proposed model was verified by a dataset collected from social network services and outperformed baselines.

GAN based Data Augmentation of Channel Data for the Application of RF Finger-printing in NFC (NFC에서 무선 핑거프린팅 기술 적용을 위한 GAN 기반 채널데이터 증강방안)

  • Lee, Woongsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1271-1274
    • /
    • 2021
  • RF fingerprinting based on deep learning (DL) has gained interests as a means to improve the security of near field communication (NFC) by allowing identification of NFC tags based on unique physical characteristics. To achieve high accuracy in the identification of NFC tags, it is crucial to utilize a large number of training data, however it is hard to collect such dataset in practice. In this study, we have provided new methodology to generate RF waveform from NFC tags, i.e., data augmentation, based on a conditional generative adversarial network (CGAN). By using the RF waveform of NFC tags which is collected from the testbed with software defined radio (SDR), we have confirmed that the realistic RF waveform can be generated through our proposed scheme.

DEVELOPMENT OF A MAJORITY VOTE DECISION MODULE FOR A SELF-DIAGNOSTIC MONITORING SYSTEM FOR AN AIR-OPERATED VALVE SYSTEM

  • KIM, WOOSHIK;CHAI, JANGBOM;KIM, INTAEK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.624-632
    • /
    • 2015
  • A self-diagnostic monitoring system is a system that has the ability to measure various physical quantities such as temperature, pressure, or acceleration from sensors scattered over a mechanical system such as a power plant, in order to monitor its various states, and to make a decision about its health status. We have developed a self-diagnostic monitoring system for an air-operated valve system to be used in a nuclear power plant. In this study, we have tried to improve the self-diagnostic monitoring system to increase its reliability. We have implemented three different machine learning algorithms, i.e., logistic regression, an artificial neural network, and a support vector machine. After each algorithm performs the decision process independently, the decision-making module collects these individual decisions and makes a final decision using a majority vote scheme. With this, we performed some simulations and presented some of its results. The contribution of this study is that, by employing more robust and stable algorithms, each of the algorithms performs the recognition task more accurately. Moreover, by integrating these results and employing the majority vote scheme, we can make a definite decision, which makes the self-diagnostic monitoring system more reliable.

Adversarial Complementary Learning for Just Noticeable Difference Estimation

  • Dong Yu;Jian Jin;Lili Meng;Zhipeng Chen;Huaxiang Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.438-455
    • /
    • 2024
  • Recently, many unsupervised learning-based models have emerged for Just Noticeable Difference (JND) estimation, demonstrating remarkable improvements in accuracy. However, these models suffer from a significant drawback is that their heavy reliance on handcrafted priors for guidance. This restricts the information for estimating JND simply extracted from regions that are highly related to handcrafted priors, while information from the rest of the regions is disregarded, thus limiting the accuracy of JND estimation. To address such issue, on the one hand, we extract the information for estimating JND in an Adversarial Complementary Learning (ACoL) way and propose an ACoL-JND network to estimate the JND by comprehensively considering the handcrafted priors-related regions and non-related regions. On the other hand, to make the handcrafted priors richer, we take two additional priors that are highly related to JND modeling into account, i.e., Patterned Masking (PM) and Contrast Masking (CM). Experimental results demonstrate that our proposed model outperforms the existing JND models and achieves state-of-the-art performance in both subjective viewing tests and objective metrics assessments.

A Methodology for Bankruptcy Prediction in Imbalanced Datasets using eXplainable AI (데이터 불균형을 고려한 설명 가능한 인공지능 기반 기업부도예측 방법론 연구)

  • Heo, Sun-Woo;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.65-76
    • /
    • 2022
  • Recently, not only traditional statistical techniques but also machine learning algorithms have been used to make more accurate bankruptcy predictions. But the insolvency rate of companies dealing with financial institutions is very low, resulting in a data imbalance problem. In particular, since data imbalance negatively affects the performance of artificial intelligence models, it is necessary to first perform the data imbalance process. In additional, as artificial intelligence algorithms are advanced for precise decision-making, regulatory pressure related to securing transparency of Artificial Intelligence models is gradually increasing, such as mandating the installation of explanation functions for Artificial Intelligence models. Therefore, this study aims to present guidelines for eXplainable Artificial Intelligence-based corporate bankruptcy prediction methodology applying SMOTE techniques and LIME algorithms to solve a data imbalance problem and model transparency problem in predicting corporate bankruptcy. The implications of this study are as follows. First, it was confirmed that SMOTE can effectively solve the data imbalance issue, a problem that can be easily overlooked in predicting corporate bankruptcy. Second, through the LIME algorithm, the basis for predicting bankruptcy of the machine learning model was visualized, and derive improvement priorities of financial variables that increase the possibility of bankruptcy of companies. Third, the scope of application of the algorithm in future research was expanded by confirming the possibility of using SMOTE and LIME through case application.