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Abstract 

 
Recently, many unsupervised learning-based models have emerged for Just Noticeable 
Difference (JND) estimation, demonstrating remarkable improvements in accuracy. However, 
these models suffer from a significant drawback is that their heavy reliance on handcrafted 
priors for guidance. This restricts the information for estimating JND simply extracted from 
regions that are highly related to handcrafted priors, while information from the rest of the 
regions is disregarded, thus limiting the accuracy of JND estimation. To address such issue, 
on the one hand, we extract the information for estimating JND in an Adversarial 
Complementary Learning (ACoL) way and propose an ACoL-JND network to estimate the 
JND by comprehensively considering the handcrafted priors-related regions and non-related 
regions. On the other hand, to make the handcrafted priors richer, we take two additional priors 
that are highly related to JND modeling into account, i.e., Patterned Masking (PM) and 
Contrast Masking (CM). Experimental results demonstrate that our proposed model 
outperforms the existing JND models and achieves state-of-the-art performance in both 
subjective viewing tests and objective metrics assessments. 
 
 
Keywords: Just Noticeable Difference (JND), convolutional neural networks, Human 
Visual System (HVS). 
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 1. Introduction 

Just Noticeable Difference (JND) refers to the maximum image pixel change that the Human 
Visual System (HVS) [1] cannot perceive, which reflects the visual redundancy of the HVS. 
Therefore, JND models are commonly used for estimating the visual redundancy that existed 
in the image/video. Hereby, JND models are widely used in image/video processing fields, 
such as perceptual image/video compression [2] [3] [4] [5] [6], quality assessment [7] [8] [9], 
privacy preserving [10] [11] [12], watermarking [13] [14], and so on. JND modeling has been 
studied for decades. The main goal of JND modeling is to accurately estimate the visual 
redundancy of the HVS in terms of different visual content. Currently, the existing JND 
models can be approximately classified into two main categories, that is, HVS-inspired JND 
models [15] [16] [17] [18] [19] [20] [21] [22] and learning-based JND ones [23] [24] [25] [26] 
[27] [28] [29] [30]. 

HVS-inspired JND models are mainly mathematically formulated by developing various 
maskings, which are highly related to the characteristics of the HVS. For instance, contrast 
[16], concealment effect [21], luminance adaptation [15], pattern complexity [20], foveated 
effect [17], and visual attention [22] were formulated as various maskings for modeling JND. 
Such kinds of JND models commonly have good interpretability. However, as the perceptual 
mechanism of HVS is still not fully understood, this limits the development of such kinds of 
JND models. 

With the great success achieved by deep learning, many efforts [23] [24] [25] [26] [27] [28] 
[29] [30] are made to model JND via learning-based methods, termed learning-based JND 
models. It significantly improved the accuracy of JND modeling. Especially, Wu et al. [27] 
and Jin et al. [23] built an unsupervised learning JND generative network and used image 
quality assessment (IQA) to guide training. Although their performances have been improved, 
the generative network they used heavily relies on handcrafted priors. This restricts the 
information for estimating JND simply extracted from regions that are highly related to 
handcrafted priors, while information from the rest of the regions is disregarded, limiting their 
accuracy in JND estimation. Specifically, the JND estimated by their models mainly focuses 
on the regions guided by the handcrafted priors, which causes the estimate of the JND in the 
non-related handcrafted priors regions to be inaccurate. Inspired by Zhang et al. [31], we 
introduce Adversarial Complementary Learning (ACoL) into the modeling of JND, termed 
ACoL-JND. It comprehensively considers the JND of handcrafted priors-related regions and 
non-related regions in the image. In addition, the pattern complexity (PC) [20] of images were 
used as the handcrafted priors in [27] and [23] to guide the generation of JND and achieved 
good performance. However, PC is only a representation of pattern masking and cannot reflect 
the spatial masking effect. Hence, we introduce a spatial masking, composed of pattern 
masking and contrast masking, into the JND modeling to enrich the handcrafted priors. The 
final results show that our model is highly consistent with HVS and has reached state-of-the-
art performance.  

1.1 Contributions 

The following is a summary of the paper’s main contributions: 
 We propose a novel JND generation network model by adopting ACoL, termed as ACoL-

JND. The ACoL-JND model is composed of two parallel convolutional networks, which 
extracts different information in images by using dynamic erasure design. This allows the 
information of the handcrafted priors-related regions and non-related regions is 
complementally utilized to estimate JND. 
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 To enrich the handcrafted priors, two additional priors that are highly related to JND 
modeling are considered, including pattern masking (PM) and contrast masking (CM). 
They form spatial masking and serve as prior knowledge to guide the network for JND 
generation. 

 We compared our model with other models in detail through subjective observation 
testing and objective Image Quality Assessment (IQA) evaluation, demonstrating that our 
proposed model improves the accuracy of JND modeling. 

1.2 Organization 

The remainder of the paper will be described in the following sections. Section 2 introduces 
the related work of JND models. Section 3 provides an introduction to the specifics of ACoL-
JND. In Section 4, we present a series of studies (i.e., detailed comparison, ablation study, 
subjective observation test, objective IQAs evaluation, complementary features analysis). 
Section 5 concludes the paper. 

2. Related Works 
In this section, we mainly review the existing JND models. In addition, as IQA-relevant 
techniques are involved in this work, we also review the IQA metrics. 

2.1 HVS-Inspired JND Models 
Bae et al. [16] proposed a JND model based on a novel measure of texture complexity by 
considering the visual patterns and contrast intensity. It revealed that more signal changes can 
be tolerated by the HVS at the disordered texture regions in the image. After that, Wu et al. 
[21] assumed that the concealment effect of disordered regions in the image is higher than that 
of ordered regions and built a model for JND estimation. Meanwhile, Bae et al. [15] combined 
the influence of DCT domain frequency and image background luminance on the luminance 
adaptation effect and proposed a DCT-based JND model. Inspired by cognitive science that 
visual content can be represented by the image's repetitive patterns extracted by HVS, Wu et 
al. [20] introduced PC into the JND modeling and improved the accuracy of JND estimation. 
Afterward, Chen et al. [17] observed that the JND increased when visual eccentricity became 
large, and they proposed foveated masking for the JND modeling. Additionally, Zeng et al. 
[22] also took visual saliency into account and used it to scale the JND. All these models can 
predict the JND for each pixel of the image while their accuracy is limited due to the 
incomprehensible of the HVS. 

2.2 Learning-Based JND Models 
Jin et al. [24] first proposed the picture-wise JND and developed a JND dataset (e.g., MCL-
JCI) for learning the picture-wise JND. Subsequently, Liu et al. [25] regarded picture-wise 
JND as a classification problem and learned a picture-wise JND profile for picture 
compression. After that, Wang et al. [26] built a large-scale JND video dataset by taking video 
compression distortion into account, termed VideoSet. However, these two JND datasets only 
considered the distortion of image and video compression. To cover more distortions, Liu et 
al. [32] built the first comprehensive JND dataset with multiple distortion types. Meanwhile, 
to estimate the satisfied user ratio (SUR) and video-wise JND, Zhang et al. [28] introduced 
temporal and spatial details into the proposed JND and SUR model. However, all these 
learning-based JND models reviewed above were able to predict the picture/video-wise, while 
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they cannot estimate the JND for each pixel. To estimate the JND for each pixel, Wu  et al. 
[27] utilized convolutional neural networks to generate the JND for each pixel, while the 
reasonability of the generated JND was measured with an IQA metric (e.g., SSIM). Besides, 
the handcrafted prior PC was used for guiding JND generation. All these designs estimated 
the JND in an unsupervised learning way. After that, to make the handcrafted prior richer, Jin 
et al. [23] introduced visual attention (VA) [33] in JND generation. Besides, the characteristics 
of full RGB channels were considered. To better assess the generated JND they also proposed 
an adaptive IQA (A-IQA) module for assessing the generated JND, which largely improved 
the accuracy of JND. The unsupervised learning-based JND models reviewed above 
significantly improve the JND modeling for each pixel. However, they heavily relied on 
handcrafted priors, resulting in extracted information solely from regions highly related to 
handcrafted priors, while ignoring information from the rest of the regions. Considering that 
JND is a result determined by a whole perception of the image, all the relevant information 
should be considered when modeling without discrimination. 

2.3 IQA 
Image quality assessment (IQA) metrics are developed to replace humans in accurately 
evaluating the quality of images. After decades of studies, the accuracy of the IQA metrics has 
been largely improved. There are several typical IQA metrics, that are widely used in the image 
processing field, including Structural Similarity Index Measure (SSIM) [34], Gradient 
Magnitude Similarity Deviation (GMSD) [35], Normalized Laplacian Pyramid Distance 
(NLPD) [36], Multi-Scale Structural Similarity Index Measure (MS-SSIM) [37], Feature 
Similarity Index Measure (FSIM) [38], Most Apparent Distortion (MAD) [39], Visual 
Information Fidelity (VIF) [40], Deep Image Structure and Texture Similarity (DISTS) [41],  
Visual Saliency Induced (VSI) [42], Learned Perceptual Image Patch Similarity (LPIPS) [43], 
Complex Wavelet SSIM (CW-SSIM) [44], Gradient Similarity (GSM) [45], and so on. 

However, these IQA metrics can only perform well for specific types of distortion. There 
are at least 17 types of distortion (e.g., contrast change, mean shift, spatially correlated noise, 
and so on) as studied in the TID2008 [46] dataset. Besides, with the continuous development 
of multimedia technology, more and more new types of distortion have been generated. At 
present, there is no single IQA that can perform well on all types of distortion. To solve this 
problem, Liu et al. [47] proposed a multi-method fusion (MMF) algorithm. They divided all 
distortion types in the TID2008 [46] dataset into five groups. Then, they combined multiple 
IQAs based on machine learning techniques to achieve the best performance. After that, Jin et 
al. [23] assigned the best combination consisting of three IQAs to each distortion group by 
training a distortion-type classifier using ResNets [48] networks and they proposed an adaptive 
image quality assessment (A-IQA) module to replace humans in assessing the reasonability of 
the generated JND and achieved good performance. Inspired by this, this paper will use the A-
IQA module to guide network training to improve the accuracy of JND estimation. 

3. Proposed ACoL-JND Model 

3.1 Architecture 
The existing unsupervised learning-based JND models [27] [23] have a heavy reliance on 
handcrafted priors for guidance. However, this restricts the information for estimating JND 
simply extracted from regions that are highly related to handcrafted priors, while information 
from the rest of the regions is disregarded. This has caused the limitation of their ability to 
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estimate JND. Zhang et al. [31] proposed a novel adversarial complementary learning method 
for weakly supervised object localization and achieved great success. Inspired by this, we 
adopt adversarial complementary learning to fully extract the complementary information of 
the handcrafted priors-related regions and non-related regions to improve the performance of 
Jin et al.'s [23] JND model. Meanwhile, we modify the network of [31] to make it more suitable 
for JND estimation, and more details are exhibited in Fig. 1. Our model is composed of four 
convolutional networks (i.e., CNN1, CNN2, CNN3, and CNN4) and two upper sampling 
layers (i.e., Up1, Up2). Besides, four operations (i.e., Stack, Erasing, Element-Wise addition, 
and Thresholding) and an adaptive IQA (A-IQA) [23] module are included. Among them, 
CNN1, CNN2, CNN3, and CNN4 are used to extract image features. Up1 and Up2 are used 
to upsample the features to meet the size requirements of the next operation. A leaky rectified 
linear unit (LReLU) [49] rectifier is used to activate each convolution layer. The specific 
details of the network structure are shown in Table 1. Then, the stack operation ○s E A is used to 
stack two tensors according to a certain dimension. The erasing operation A○-E A is used to 
dynamically erase image characteristics according to a mask. The element-wise addition 
operation A○+ E A is used to inject the generated JND map into the original image. The thresholding 
operation is used to generate a mask according to the specified threshold. Finally, the A-IQA 
[23] module evaluates the quality of distorted images and optimizes the network training as a 
loss. The specific architecture of the ACoL-JND model is shown in Fig. 1.  
 

 
Fig. 1. The architecture of the ACoL-JND network. 

 
First, we use 𝑓𝑓𝑝𝑝𝑝𝑝 [20], 𝑓𝑓𝑐𝑐𝑐𝑐 [20], and 𝑓𝑓𝑣𝑣𝑣𝑣 [33] (i.e., we retain the 𝑓𝑓𝑣𝑣𝑣𝑣 of Jin et al.'s [23] JND 

model) as the prior knowledge, which is stacked with the original image 𝑥𝑥𝑜𝑜 as the input 𝑖𝑖1 of 
CNN1. As shown in the following formula. 

�𝑥𝑥𝑜𝑜 , 𝑓𝑓𝑝𝑝𝑝𝑝, 𝑓𝑓𝑐𝑐𝑐𝑐, 𝑓𝑓𝑣𝑣𝑣𝑣� = {𝑥𝑥𝑜𝑜}○s �𝑓𝑓𝑝𝑝𝑝𝑝, 𝑓𝑓𝑐𝑐𝑐𝑐, 𝑓𝑓𝑣𝑣𝑣𝑣�                                          (1) 
After passing through CNN1, features 𝑖𝑖2 is obtained. 𝑖𝑖2 is then fed into CNN2 to obtain the 
features 𝑖𝑖3 . 𝑖𝑖3  is upsampled by Up1 to obtain the features 𝑖𝑖4 . 𝑖𝑖4  is thresholded to get the 
masking 𝑖𝑖5. Later, the masking 𝑖𝑖5 is used to erase the features extracted by CNN2 in 𝑖𝑖2 to 
obtain the features 𝑖𝑖6. Therefore, we have the following formula. 

𝑖𝑖6 = 𝑖𝑖2 A○-E 𝑖𝑖5                                                          (2) 
After that, the features 𝑖𝑖6 is fed into CNN3 to obtain the features 𝑖𝑖7. 𝑖𝑖3 and 𝑖𝑖7 are stacked and 
fed into CNN4 to obtain the features 𝑖𝑖8 . 𝑖𝑖8  is upsampled to generate the JND map 𝑥𝑥𝑗𝑗 . 
Subsequently, the JND map 𝑥𝑥𝑗𝑗 is injected into the original image 𝑥𝑥𝑜𝑜. Then, we get a distorted 
image 𝑥𝑥𝑑𝑑 and this process is formulated as. 
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𝑥𝑥𝑑𝑑 = 𝑥𝑥𝑜𝑜 A○+ E 𝑥𝑥𝑗𝑗                                                         (3) 
Eventually, we use the A-IQA [23] module to evaluate the quality of the distorted image 𝑥𝑥𝑑𝑑 
with the original image 𝑥𝑥𝑜𝑜 as a reference and use it as a loss to optimize the network training. 
 

Table 1. The detailed architecture of the main components in the ACoL-JND network 
Network Name Input Shape Operation Output Shape Activation 

CNN1 

1 E 32, 6, 176, 176 Conv. (3 × 3) 32, 8, 176, 176 LReLU 

2 E 32, 8, 176, 176 Conv. (3 × 3) 32, 16, 176, 176 LReLU 
3 E 32, 16, 176, 176 Conv. (3 × 3) 32, 16, 176, 176 LReLU 
4 E 32, 16, 176, 176 Conv. (3 × 3) 32, 32, 176, 176 LReLU 

 1 E 32, 32, 176, 176 Conv. (3 × 3) 32, 32, 176, 176 LReLU 
CNN2 2 E 32, 32, 176, 176 Conv. (3 × 3) 32, 64, 88, 88 LReLU 

/ 
3 E 32, 64, 88, 88 Conv. (3 × 3) 32, 128, 88, 88 LReLU 
4 E 32, 128, 88, 88 Conv. (3 × 3) 32, 64, 44, 44 LReLU 

CNN3 5 E 32, 64, 44, 44 Conv. (3 × 3) 32, 32, 44, 44 LReLU 
 6 E 32, 32, 44, 44 Conv. (3 × 3) 32, 32, 44, 44 LReLU 

CNN4 
1 E 32, 64, 44, 44 Conv. (3 × 3) 32, 32, 44, 44 LReLU 
2 E 32, 32, 44, 44 Conv. (3 × 3) 32, 16, 44, 44 LReLU 
3 E 32, 16, 44, 44 Conv. (3 × 3) 32, 3, 44, 44 LReLU 

Up1 一 32, 32, 44, 44 Bilinear 32, 32, 176, 176 一 
Up2 一 32, 3, 44, 44 Bilinear 32, 3, 176, 176 一 

3.2 Spatial Masking Based JND Estimation 
The existing JND models [27] [23] use the handcrafted prior i.e., PC [20] to guide the network 
for JND estimation. However, they cannot accurately estimate the JND, resulting in obvious 
noise in the object edges and background regions, due to PC only being a representation of 
pattern masking and not reflecting the spatial masking effect. Hence, spatial masking highly 
related to JND modeling is considered, which is composed of pattern masking 𝑓𝑓𝑝𝑝𝑝𝑝  and 
contrast masking 𝑓𝑓𝑐𝑐𝑐𝑐  from [20]. It can make the handcrafted priors richer and guide the 
network to generate JND. Meanwhile, pattern masking 𝑓𝑓𝑝𝑝𝑝𝑝 and contrast masking 𝑓𝑓𝑐𝑐𝑐𝑐 play 
different roles in the process of JND estimation. Among them, pattern masking 𝑓𝑓𝑝𝑝𝑝𝑝 mainly 
guides the network to estimate JND in irregular regions. And contrast masking 𝑓𝑓𝑐𝑐𝑐𝑐 has a better 
performance in guiding the network to estimate JND in object regular edge regions. Generally, 
pattern masking 𝑓𝑓𝑝𝑝𝑝𝑝 and contrast masking 𝑓𝑓𝑐𝑐𝑐𝑐 exist simultaneously in one image. Wu et al. 
[20] believe that one of the two masking effects plays a leading role, and regard the dominant 
masking effect as the final spatial masking. This way will ignore the role of another masking 
effect in spatial masking. In this paper, we consider both masking effects in our JND modeling 
and retain [23]'s visual attention 𝑓𝑓𝑣𝑣𝑣𝑣 [33] to improve the accuracy of JND estimation. 

3.3 Loss Function 
ACoL-JND model mostly inherits Jin et al.'s [23] loss function. As mentioned above, we use 
the A-IQA [23] module to evaluate the quality of distorted images and optimize network 
training as a loss. Thus, the formula is as follows. 

𝐿𝐿1 = Q(𝑥𝑥𝑜𝑜, 𝑥𝑥𝑑𝑑)                                                      (4)     
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Then, to guarantee that the generated JND cannot be perceived by HVS, we prefer to control 
the JND injection to the high gradient region of the image. Consequently, we inherit [23] as 
follows. 

𝐿𝐿2 = 𝑙𝑙𝑙𝑙(𝑀𝑀2 + 𝑁𝑁2 + ℎ0) − 𝑙𝑙𝑙𝑙 (2 • 𝑀𝑀 • 𝑁𝑁 + ℎ0)                             (5)   
The gradient of the original image is represented by 𝑀𝑀, and the value of the JND map is 
represented by 𝑁𝑁. In addition, to prevent the denominator from being zero, we add a constant 
ℎ0, ℎ0 = 0.001. 

Ultimately, we have a total loss function as follows. 
𝐿𝐿 = 𝛿𝛿 • 𝐿𝐿1 + 𝜂𝜂 • 𝐿𝐿2                                                   (6)   

𝐿𝐿 is the total loss of the network. Refer to [27], [23], set 𝛿𝛿 = 1 and 𝜂𝜂 = 0.1. 

3.4 Implementation Details 
In this paper, we evaluate our performance against the anchor methods in COCO2017 [50] and 
CSIQ [51] datasets. Among them, randomly select 1000 pictures from COCO2017 [50] to 
train the model. The threshold value of each channel is the mean value of each channel after 
Up1 sampling. The batch size is 32, and the learning rate is 10−5. Adam [52] is used to 
optimize network training. Four models (i.e., Wu2017 [20], Wu2020 [27], Jiang2022 [53], 
Jin2022 [23]) are used as anchors to compare with our proposed model. We inject the JND 
map into the original image as noise according to the following formula. 

𝐷𝐷 = 𝑂𝑂A○+ E (𝜆𝜆 • 𝑅𝑅 • 𝐽𝐽)                                                    (7) 
𝑅𝑅 is a random matrix, whose value only includes positive one and negative one. JND maps 
generated by different JND models are represented by 𝐽𝐽. Then, the magnitude of the JND map 
𝐽𝐽 is adjusted by 𝜆𝜆 to inject the original image 𝑂𝑂 to obtain a distorted image 𝐷𝐷. 

4. Experiments 
In this section, we compare our proposed model with four anchor methods. Then, we conduct 
ablation studies to further illustrate the reasonability of our proposed model. The PSNR of 
distorted images in Fig. 2 (a2) - (b4) is adjusted to 26.06 dB via (7). In addition, subjective 
observation tests and objective IQA evaluations are conducted to compare the performance of 
the proposed model with the anchor models. Finally, we analyze the crucial complementary 
features generated in the network.  

4.1 JND Model Comparison 
As shown in Fig. 2, four anchor methods (a2) - (a5) (i.e., Wu2017 [20], Wu2020 [27], 
Jiang2022 [53], Jin2022 [23]) are compared with our proposed model (a6). At first, Wu2017 
[20] further refine the order and disorder regions of the image using pattern complexity. Thus, 
the high-complexity regions are injected with more noise resulting in obvious distortion, such 
as the face of the Statue of Liberty. Then, Wu2020 [27] takes pattern complexity as the 
handcrafted priors to guide the network for JND estimation. However, we can find that they 
overestimate JND in the sky background, resulting in obvious noise in such region. Meanwhile, 
Jiang2022 [53] takes the difference between the original image and the Critical Perceptual 
Lossless (CPL) image directly generated from a top-down perspective as the predicted JND. 
However, they overestimate the JND at the edge of the object. The obvious noise is found in 
the outline of the Statue of Liberty. Finally, although Jin2022 [23] achieved good results 
through RGB full channel modeling, the noise of the Statue of Liberty's head is still more 
obvious than the model we proposed. In summary, our model has great performance in 
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estimating the JND of the smooth background and the object edge regions. 
 

 

Fig. 2. Detailed comparison among different models. 

4.2 Ablation Study 
We design ablation studies to illustrate our proposed model. As shown in Fig. 2, (b1) is the 
BL, (b2) is the BL+ACoL, (b3) is the BL+PM+CM, and (b4) is the BL+ACoL+PM+CM. We 
regard the JND model of Jin2022 [23] as BL, and BL+ACoL represents the BL used ACoL 
network. Then, BL+PM+CM represents using PM and CM to replace PC. Finally, the model 
proposed in this paper integrates ACoL and PM+CM, which are recorded as 
BL+ACoL+PM+CM, i.e., Ours. It can be seen from Fig. 2 that the noise on the face of the 
Statue of Liberty in BL is more obvious than in others. Although BL+ACoL has less noise on 
the face of the Statue of Liberty than BL, the background noise has not decreased significantly. 
The noise of BL+PM+CM in the background is reduced, but the noise of the Statue of Liberty’s 
face is obvious. Finally, we integrated ACoL and PM+CM to get BL+ACoL+PM+CM. It takes 
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into account the noise in the face region of the Statue of Liberty and the background region, 
so it achieves the best performance. 

4.3 Subjective Observation Test 
To further compare the performance of anchors (i.e., Wu2017 [20], Wu2020 [27], Jiang2022 
[53], Jin2022 [23]) with our proposed model, we conduct a subjective observation test 
experiment. P1 to P12 in Fig. 3 is a thumbnail of the test image from the CSIQ [51] dataset. 
Then, 21 testers were invited to participate in the subjective test. During the experiment, the 
distorted images of anchors and our model appear randomly on both sides of the screen. The 
correspondence between images and models is unknown to testers. The experimental 
environment's configurations refer to ITU-R BT.500-11 [54]. Testers scored according to the 
subjective quality of images, and the scoring criteria are shown in Table 2. 
 

 

Fig. 3. Thumbnails of subjective observation tests. 
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Table 2. Scoring rules of image quality for subjective observation test 
Description A lot 

better 
Better Slightly 

better 
Alike Slightly 

better 
Better A lot 

better 
Score 3 2 1 0 -1 -2 -3 
Side Left Center Right 

 
The results of the subjective observation test are shown in Table 3. The average value and 

standard deviation are denoted by 'Mean' and 'Std' respectively. A positive 'Mean' value 
indicates that the JND model on the upper side is superior to the JND model on the lower side. 
And the degree of goodness increases as the 'Mean' value increases. The consistency of the 
testers' judgments is reflected by the 'Std' value. Meanwhile, the higher the consistency, the 
closer the 'Std' is to zero. Table 3 includes the comparison of our model with four anchors and 
the comparison of four models (i.e., BL (i.e., Jin2022 [23]), BL+ACoL, BL+PM+CM, Ours 
(i.e., BL+ACoL+PM+CM)) in the ablation study. We can find that most of the 'Mean' values 
in the table are positive. In addition, the average values of 'Mean' in the last row in Table 3 
are all positive. These findings demonstrate that our proposed model performs better than 
others in estimating JND. 

Table 3. Subjective observation test results 

Index 
Ours VS. Ours VS. Ours VS. Ours VS. 

Wu2017 [20] Wu2020 [27] Jiang2022 [53] Jin2022 [23] 
Mean Std Mean Std Mean Std Mean Std 

P1 0.43 1.05 1.14 1.17 0.90 1.02 0.52 0.91 
P2 0.67 0.99 0.71 1.20 0.67 1.04 0.05 0.65 
P3 2.05 0.79 1.33 1.04 2.05 1.13 0.57 0.90 
P4 1.33 1.08 1.14 0.77 1.76 0.97 0.52 1.33 
P5 0.90 0.92 1.10 1.27 1.10 1.27 0.52 0.96 
P6 0.86 0.94 0.76 1.34 1.90 0.92 0.33 1.04 
P7 1.38 0.90 1.14 1.04 0.33 1.49 1.19 1.01 
P8 0.86 1.39 1.10 1.11 1.52 1.14 0.71 1.20 
P9 0.81 1.14 1.24 1.02 1.43 0.95 0.14 0.77 
P10 1.14 1.25 1.43 0.90 1.10 0.97 0.57 0.73 
P11 1.10 1.23 0.76 1.44 0.95 1.17 1.10 1.02 
P12 0.90 1.11 0.86 0.89 1.10 1.27 0.71 0.70 

Average 1.04 一 1.06 一 1.23 一 0.58 一 

Index 
BL+ACoL BL+PM+CM Ours VS. Ours VS. 

VS. BL VS. BL BL+ACoL BL+PM+CM 
Mean Std Mean Std Mean Std Mean Std 

P1 0.10 0.81 0.19 0.79 0.57 0.95 0.57 1.05 
P2 0.24 0.92 0.05 0.49 0.19 0.96 0.05 0.72 
P3 0.52 0.96 0.19 0.66 0.90 0.75 0.33 0.64 
P4 -0.19 1.14 0.10 0.75 0.57 0.79 0.14 0.99 
P5 0.62 1.05 0.67 0.94 0.29 0.63 0.14 0.71 
P6 0.57 0.49 0.48 1.05 0.10 0.61 0.10 0.68 
P7 0.29 0.82 -0.10 1.02 0.71 0.98 0.76 0.97 
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P8 0.48 0.73 0.52 0.85 0.14 0.47 0.14 0.77 
P9 0.05 0.72 0.38 0.79 0.19 0.59 -0.05 0.79 
P10 0.05 0.72 0.33 0.89 0.10 0.68 0.29 0.55 
P11 0.19 0.73 0.90 0.75 0.00 0.62 0.14 0.94 
P12 0.57 0.66 0.57 0.90 0.10 0.61 0.24 0.81 

Average 0.29 一 0.36 一 0.32 一 0.24 一 

4.4 Objective IQAs Evaluation 
In addition to subjective observation testing, we also utilize IQAs to objectively evaluate our 
proposed ACoL-JND model compared to four anchors. Meanwhile, the BL+ACoL and 
BL+PM+CM models used in the ablation study are also compared with our proposed model. 
Then, three advanced IQA evaluation metrics are used for objective estimation testing, 
including Normalized Laplacian Pyramid Distance (NLPD) [36], Most Apparent Distortion 
(MAD) [39], and Visual Information Fidelity (VIF) [40]. 
 

 

Fig. 4. Comparison of NLPD values of different models. 

 

 

Fig. 5. Comparison of MAD values of different models. 
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Fig. 6. Comparison of VIF values of different models. 

We utilize these three objective IQA evaluation metrics to test our proposed model against 
other models on all images in the CSIQ [51] dataset. The average results are shown in Fig. 4 
to Fig. 6. At first, Fig. 4 shows the results of NLPD, the smaller the value the better the 
performance of the JND model. From the results, we can find that the NLPD value of the 
ACoL-JND model is the lowest among all models. It indicates that the performance of our 
proposed model exceeds that of other models. Meanwhile, the MAD results shown in Fig. 5 
also indicate that smaller values represent better model performance. Our proposed ACoL-
JND model also achieved the best performance compared to other models. Finally, Fig. 6 
shows the results of VIF. Unlike the NLPD and MAD mentioned above, the higher VIF value 
the better the performance of the model. From this result, it can be seen that the VIF value of 
our proposed model is higher than that of other models. This result is consistent with the results 
of NLPD and MAD, illustrating that our proposed ACoL-JND model has surpassed other 
models to achieve state-of-the-art performance. 

We compare the proposed model with other models using objective IQAs evaluation and 
subjective observation test mentioned above. The results demonstrate that our model has 
higher accuracy in estimating image JND than other models. 

4.5 Complementary Features Analysis 
To further demonstrate the proposed ACoL-JND model, we display the crucial features 
generated during the Fig. 1 network estimation of JND. These features are shown in Fig. 7. 
Fig. 7 (a1) - (b1) are from the features  𝑖𝑖2 of Fig. 1. The Fig. 7 (a2) - (b2) are from the features 
𝑖𝑖4 of Fig. 1. The Fig. 7 (a3) - (b3) are from the masking 𝑖𝑖5 of Fig. 1. The Fig. 7 (a4) - (b4) are 
from the features 𝑖𝑖6  of Fig. 1. Except for (a3) and (b3), Fig. 7 shows the results after 
normalization. 

At first, we use CNN1 in Fig. 1 to extract the initial features and obtain the 𝑖𝑖2, which are 
shown in Fig. 7 (a1) and (b1). Then, use CNN2 in Fig. 1 to further extract the features and 
upsample by Up1 to obtain the 𝑖𝑖4 as shown in Fig. 7 (a2) and (b2). We can find that these 
features focus on regions that are highly related to handcrafted priors while ignoring non-
related handcrafted priors regions. Subsequently, the 𝑖𝑖4 is thresholded to generate the masking 
𝑖𝑖5 as shown in Fig. 7 (a3) and (b3). The 𝑖𝑖5 is used to erase some information extracted by 
CNN2 in the 𝑖𝑖2 to obtain the 𝑖𝑖6 as shown in Fig. 7 (a4) and (b4). The CNN3 extracts the 
information of the non-related handcrafted priors regions (a4) and (b4) of the 𝑖𝑖2  as 
complementary information of 𝑖𝑖3. 
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Fig. 7. Crucial features generated by ACoL-JND network. 

In summary, the proposed ACoL-JND model utilizes adversarial learning to enable the 
network to learn complementary information between the handcrafted priors-related regions 
and non-related regions. The experiment shows that this design can effectively reduce the 
network's dependence on the accuracy of prior knowledge. 

5. Conclusion 
In this paper, a novel ACoL-JND model has been proposed for JND estimation. Adversarial 
complementary learning has been applied to JND modeling, which uses two parallel 
convolutional networks and a dynamic erase design to extract information from the image. 
This approach forces two convolutional networks to extract complementary information to 
solve the problem of information from the non-related handcrafted priors regions being 
disregarded. Thus, it has comprehensively considered the JND of handcrafted priors-related 
regions and non-related regions in the image. Besides, to make the handcrafted priors richer, 
we also have introduced two additional priors that are highly related to JND modeling, 
including pattern masking (PM) and contrast masking (CM). Eventually, the experimental 
results have illustrated that our proposed model has outperformed the existing JND models 
and achieved state-of-the-art performance. 
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