• Title/Summary/Keyword: E-commerce reviews

Search Result 81, Processing Time 0.022 seconds

Amazon product recommendation system based on a modified convolutional neural network

  • Yarasu Madhavi Latha;B. Srinivasa Rao
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.633-647
    • /
    • 2024
  • In e-commerce platforms, sentiment analysis on an enormous number of user reviews efficiently enhances user satisfaction. In this article, an automated product recommendation system is developed based on machine and deep-learning models. In the initial step, the text data are acquired from the Amazon Product Reviews dataset, which includes 60 000 customer reviews with 14 806 neutral reviews, 19 567 negative reviews, and 25 627 positive reviews. Further, the text data denoising is carried out using techniques such as stop word removal, stemming, segregation, lemmatization, and tokenization. Removing stop-words (duplicate and inconsistent text) and other denoising techniques improves the classification performance and decreases the training time of the model. Next, vectorization is accomplished utilizing the term frequency-inverse document frequency technique, which converts denoised text to numerical vectors for faster code execution. The obtained feature vectors are given to the modified convolutional neural network model for sentiment analysis on e-commerce platforms. The empirical result shows that the proposed model obtained a mean accuracy of 97.40% on the APR dataset.

F_MixBERT: Sentiment Analysis Model using Focal Loss for Imbalanced E-commerce Reviews

  • Fengqian Pang;Xi Chen;Letong Li;Xin Xu;Zhiqiang Xing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.263-283
    • /
    • 2024
  • Users' comments after online shopping are critical to product reputation and business improvement. These comments, sometimes known as e-commerce reviews, influence other customers' purchasing decisions. To confront large amounts of e-commerce reviews, automatic analysis based on machine learning and deep learning draws more and more attention. A core task therein is sentiment analysis. However, the e-commerce reviews exhibit the following characteristics: (1) inconsistency between comment content and the star rating; (2) a large number of unlabeled data, i.e., comments without a star rating, and (3) the data imbalance caused by the sparse negative comments. This paper employs Bidirectional Encoder Representation from Transformers (BERT), one of the best natural language processing models, as the base model. According to the above data characteristics, we propose the F_MixBERT framework, to more effectively use inconsistently low-quality and unlabeled data and resolve the problem of data imbalance. In the framework, the proposed MixBERT incorporates the MixMatch approach into BERT's high-dimensional vectors to train the unlabeled and low-quality data with generated pseudo labels. Meanwhile, data imbalance is resolved by Focal loss, which penalizes the contribution of large-scale data and easily-identifiable data to total loss. Comparative experiments demonstrate that the proposed framework outperforms BERT and MixBERT for sentiment analysis of e-commerce comments.

A Study on Market Segmentation Based on E-Commerce User Reviews Using Clustering Algorithm (클러스터링 기법을 활용한 이커머스 사용자 리뷰에 따른 시장세분화 연구)

  • Kim, Mingyeong;Huh, Jaeseok;Sa, Aejin;Jun, Ahreum;Lee, Hanbyeol
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.21-36
    • /
    • 2022
  • Recently, as COVID-19 has made the e-commerce market expand widely, customers who have different consumption patterns appear in the market. Because companies can obtain opinions and information of customers from reviews, they increasingly face the requirements of managing customer reviews on online platform. In this study, we analyze customers and carry out market segmentation for classifying and defining type of customers in e-commerce. Specifically, K-means clustering was conducted on customer review data collected from Wemakeprice online shopping platform, which leads to the result that six clusters were derived. Finally, we define the characteristics of each cluster and propose a customer management plan. This paper is possible to be used as materials which identify types of customers and it can reduce the cost of customer management and make a profit for online platforms.

Business Blogging e-Hub:An Innovative Approach to e-Business

  • Wang, Guo-An
    • International Commerce and Information Review
    • /
    • v.7 no.4
    • /
    • pp.23-36
    • /
    • 2005
  • With the rapid development of the Internet, e-business has been entering a new phase. However, there're still some problems to be settled and needs for breakthrough. The paper proposes an innovative approach to e-business models with the aim to resolve the problems. The paper reviews the exiting e-commerce models and points out some of the common weaknesses of the models, and presents the "Business Blogging e-Hub"model for e-business. With the characteristics of all-sided information, multi-dimensional interactivity and trans-model e-commerce platform, the proposed model is created and derived from the integration of the "classical"e-commerce models as B2B, B2C and C2C with the technology and essence of blogging, and is thus sure to meet rapidly changing business needs.

  • PDF

Understanding Consumer Purchase Intention via Mobile Shopping Applications: An Empirical Study from Vietnam

  • VO, Thi Huong Giang;LUONG, Duy Binh;LE, Khoa Huan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.6
    • /
    • pp.287-295
    • /
    • 2022
  • With the dramatic increase in mobile usage, more and more businesses see the potential of m-commerce. This study focuses on a subcategory of m-commerce, a mobile shopping application. To understand the purchase intention via m-commerce applications, this study is aimed to identify the main factors that are related to the applications and explore the influence of these factors on consumers' mobile shopping intention. This study uses quantitative research methods and selects Vietnam as its case study. The survey responses of 450 Vietnamese mobile shoppers were analyzed using partial least squares structural equation modeling (PLS-SEM). The results indicated that online reviews, e-service quality, and information quality are significant predictors of behavior intention, and perceived risk negatively influences consumer online purchase intention via the applications. The content enriches the combined research of detailed and possible models with quality dimensions and risk perception. Practitioners such as e-retailers and developers can enhance the quality of applications and determine strategies to reach potential users and maximize revenue. M-commerce providers should pay adequate attention to credible and influential online reviews since mobile shoppers heavily rely on reading reviews before buying a product.

Investigating the Impact of Discrete Emotions Using Transfer Learning Models for Emotion Analysis: A Case Study of TripAdvisor Reviews

  • Dahee Lee;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • v.34 no.2
    • /
    • pp.372-399
    • /
    • 2024
  • Online reviews play a significant role in consumer purchase decisions on e-commerce platforms. To address information overload in the context of online reviews, factors that drive review helpfulness have received considerable attention from scholars and practitioners. The purpose of this study is to explore the differential effects of discrete emotions (anger, disgust, fear, joy, sadness, and surprise) on perceived review helpfulness, drawing on cognitive appraisal theory of emotion and expectation-confirmation theory. Emotions embedded in 56,157 hotel reviews collected from TripAdvisor.com were extracted based on a transfer learning model to measure emotion variables as an alternative to dictionary-based methods adopted in previous research. We found that anger and fear have positive impacts on review helpfulness, while disgust and joy exert negative impacts. Moreover, hotel star-classification significantly moderates the relationships between several emotions (disgust, fear, and joy) and perceived review helpfulness. Our results extend the understanding of review assessment and have managerial implications for hotel managers and e-commerce vendors.

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

A Sentiment Analysis Algorithm for Automatic Product Reviews Classification in On-Line Shopping Mall (온라인 쇼핑몰의 상품평 자동분류를 위한 감성분석 알고리즘)

  • Chang, Jae-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.19-33
    • /
    • 2009
  • With the continuously increasing volume of e-commerce transactions, it is now popular to buy some products and to evaluate them on the World Wide Web. The product reviews are very useful to customers because they can make better decisions based on the indirect experiences obtainable through the reviews. Product Reviews are results expressing customer's sentiments and thus are divided into positive reviews and negative ones. However, as the number of reviews in on-line shopping increases, it is inefficient or sometimes impossible for users to read all the relevant review documents. In this paper, we present a sentiment analysis algorithm for automatically classifying subjective opinions of customer's reviews using opinion mining technology. The proposed algorithm is to focus on product reviews of on-line shopping, and provides summarized results from large product review data by determining whether they are positive or negative. Additionally, this paper introduces an automatic review analysis system implemented based on the proposed algorithm, and also present the experiment results for verifying the efficiency of the algorithm.

  • PDF

Effect of Consumer Characteristics on Intention to Use Product Reviews to Make Online Purchasing Decisions (소비자의 특성이 온라인 상품평 활용의도에 미치는 영향)

  • Park, Yoon-Joo
    • Journal of Information Technology Services
    • /
    • v.16 no.2
    • /
    • pp.21-32
    • /
    • 2017
  • This study analyzes the variable consumer characteristics that influence the intention to use online product reviews. In online e-commerce, where purchases take place without consumers seeing the products in person, the product reviews left by other consumers who have already purchased the product are believed to be valuable information. However, when different consumers read the same product review, their responses to it may vary. This study analyzes the characteristics of consumers who utilize product reviews for their purchases. Consumer characteristics are categorized into personal information, personality, purchasing tendency, and experience related to product reviews. These factors are examined to see if they have direct or indirect effects on a consumer's intention to use product reviews when making online purchases. We surveyed a total of 240 consumers who had experience using e-commerce and knew about online product reviews. Once the data was collected, path analysis was conducted using the statistics tool AMOS. The study results reveal that consumers who are female, extroverted, and have higher price sensitivity think that product reviews left by others are useful, and that this "perceived usefulness" has a positive effect on the intention to use product reviews for making online purchasing decisions. In addition, consumers who are agreeable to others, have high brand sensitivity, and who have left numerous reviews themselves demonstrated the tendency to trust reviews left by others more. Thus, we conclude that this "perceived reliability" makes it more likely that a consumer will use product reviews when making online purchasing decisions. Future research can be done to develop this study further by analyzing whether providing online product reviews corresponding to the personal characteristics of consumers enhances the effect of product reviews on online purchasing decisions.

A Study on the ODR Dispute Settlement System of Consumer Protection in EU (EU의 소비자보호 ODR 분쟁해결제도에 관한 연구)

  • Park, Jong-Sam
    • Journal of Arbitration Studies
    • /
    • v.28 no.4
    • /
    • pp.89-110
    • /
    • 2018
  • The purposes of this study are as follows: First, this study reviews the Online Dispute Resolution (ODR) regulations of the EU to resolve disputes which can arise in international e-commerce in the future. Second, this study tries to seek out alternative solutions to dispute resolutions based on these regulations. Third, this study increases the efficiency of the transactions by proposing effective and satisfactory dispute resolution methods for international e-commerce. First, this study reviews the concept of cross-border e-commerce, generally explores ODR, and creates comparisons with Alternative Dispute Resolution (ADR). Subsequently, this study looks into domestic ODR system and analyzes the regulations of EU ODR. This study suggests the implications of the European ODR regulations in the conclusion. The EU ODR platform is considered greatly significant in that it has increased the possibility of settlements in small disputes by enhancing consumers' accessibility to ADR procedures. Therefore, this thesis proposes a method for Korean companies to resolve disputes that may arise in e-commerce with EU by using the ODR platform. As a result, it is expected to increase the competitiveness of Korean companies in the EU market. Both legislative trends related to the ODR of the EU and establishment of the EU ODR platform have significant implications for Korean businesses in Europe. This study is expected to be useful for our businesses in the EU in reviewing the applicability of the EU ODR regulations and the dispute settlement procedures through the EU ODR platform. In addition, this study is expected to prove useful in relation to consumer protection by enhancing consumers' accessibility to dispute settlement institutions in domestic electronic commerce.