• 제목/요약/키워드: E/I imbalance

검색결과 42건 처리시간 0.027초

Aortic Remodelling in Chronic Nicotine-Administered Rat

  • Zainalabidin, Satirah;Budin, Siti Balkis;Ramalingam, Anand;Lim, Yi Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.411-418
    • /
    • 2014
  • Vascular remodelling is an adaptive mechanism, which counteracts pressure changes in blood circulation. Nicotine content in cigarette increases the risk of hypertension. The exact relationship between nicotine and vascular remodelling still remain unknown. Current study was aimed to determine the effect of clinically relevant dosage of nicotine (equivalent to light smoker) on aortic reactivity, oxidative stress markers and histomorphological changes. Twelve age-matched male Sprague-Dawley rats were randomly divided into two groups, i.e.: normal saline as control or 0.6 mg/kg nicotine for 28 days (i.p., n=6 per group). On day-29, the rats were sacrificed and the thoracic aorta was dissected immediately for further studies. Mean arterial pressure (MAP) and pulse pressure (PP) of nicotine-treated vs. control were significantly increased (p<0.05). Nicotine-treated group showed significant (p<0.05) increase tunica media thickness, and decrease in lumen diameter, suggesting vascular remodelling which lead to prior hypertension state. The phenylephrine (PE)-induced contractile response in nicotine group was significantly higher than control group ($ED_{50}=1.44{\times}10^5M$ vs. $4.9{\times}10^6M$) (p<0.05~0.001). However, nicotine-treated rat showed significantly lower endothelium-dependent relaxation response to acetylcholine (ACh) than in control group ($ED_{50}=6.17{\times}10^7M$ vs. $2.82{\times}10^7M$) (p<0.05), indicating loss of primary vascular function. Malondialdehyde (MDA), a lipid peroxidation marker was significantly higher in nicotine group. Superoxide dismutase (SOD) enzymatic activity and glutathione (GSH) were all reduced in nicotine group (p<0.05) vs. control, suggesting nicotine induces oxidative imbalance. In short, chronic nicotine administration impaired aortic reactivity, probably via redox imbalance and vascular remodelling mechanism.

Pain medication and long QT syndrome

  • Klivinyi, Christoph;Bornemann-Cimenti, Helmar
    • The Korean Journal of Pain
    • /
    • 제31권1호
    • /
    • pp.3-9
    • /
    • 2018
  • Long QT syndrome is a cardiac repolarization disorder and is associated with an increased risk of torsades de pointes. The acquired form is most often attributable to administration of specific medications and/or electrolyte imbalance. This review provides insights into the risk for QT prolongation associated with drugs frequently used in the treatment of chronic pain. In the field of pain medicine all the major drug classes (i.e. NSAIDs, opioids, anticonvulsive and antidepressant drugs, cannabinoids, muscle relaxants) contain agents that increase the risk of QT prolongation. Other substances, not used in the treatment of pain, such as proton pump inhibitors, antiemetics, and diuretics are also associated with long QT syndrome. When the possible benefits of therapy outweigh the associated risks, slow dose titration and electrocardiography monitoring are recommended.

Prevalence of child malnutrition in agro-pastoral households in Afar Regional State of Ethiopia

  • Fentaw, Rabia;Bogale, Ayalneh;Abebaw, Degnet
    • Nutrition Research and Practice
    • /
    • 제7권2호
    • /
    • pp.122-131
    • /
    • 2013
  • Based on data generated from 180 randomly selected households with children age under five years old in Aysaita district of Afar region of Ethiopia, this study explored prevalence of malnutrition and scrutinized household characteristics, maternal characteristics, specifics of the child and economic variables associated with child malnutrition. The height-for-age Z-scores (HAZ), weight-for-height Z-scores (WHZ) and weight-for-age Z-scores (WAZ) were used to measure the extent of stunting, wasting and underweight, respectively. The results revealed that prevalence of long term nutritional imbalance and malnutrition status indicator (i.e. stunting) was 67.8%. The short term measure (wasting) was found to be 12.8% and underweight was found to be 46.1%. Moreover, children in households which are headed by women, and characterized by more dependency ratio, less access to assets, health services and institutions are more likely to be undernourished.

농가주부와 경영주의 생활시간 사용 (The Structure of Time Use by Rural Housewives and their Husbands)

  • 김인숙;임평자;김희순
    • 한국농촌생활과학회지
    • /
    • 제7권1호
    • /
    • pp.81-97
    • /
    • 1996
  • The purpose of this study was to analyze the structure of time use by housewives in rural households, and to compare the time use structure of housewives with that of their husbands. To attain this goals, we have selected 108 farmhouses considering agricultural area and size in L993. Data was collected by observing how (i. e., doing what kinds of work) housewives and husbands spend time, Time use was divided into four categories : physiological time, socio-cultural time, household work time and agricultural labor time. The results in this study present a valuable insight to assuage the overloaded works of rural housewives. The major results can be outlined as follows : 1. Rural housewives worked 1.2 times longer hours a day than their husbands did. 2, There existed a severe labour time imbalance between housewives and husbands during the busy farming season. 3. The time use patterns of housewives and husbands were significantly different across agricultural areas. Also, the education level of a housewife was associated with the length of her labor time.

  • PDF

자발 성장법으로 성장된 단결정 Bi 단일 나노선의 정상 자기 저항 특성 (Ordinary Magnetoresistance of an Individual Single-crystalline Bi Nanowire)

  • 심우영;김도헌;이경일;전계진;이우영;장준연;한석희;정원용
    • 한국자기학회지
    • /
    • 제17권4호
    • /
    • pp.166-171
    • /
    • 2007
  • 단결정 Bi단일 나노선의 정상 자기 저항(ordinary magnetoresistance) 특성을 $2{\sim}300K$에서 4 단자법으로 측정하였다. I-V 측정을 통해 전기적 오믹 형성을 확인하였고, 2 K과 300 K에서 비저항이 각각 $1.0{\times}10^{-4}$$8.2{\times}10^{-5}{\Omega}{\cdot}cm$으로 측정되었다. 수직(transverse) 및 수평(longitudinal) 자기저항비(MR ratio)가 110 K와 2 K에서 각각 현재까지 보고된 MR 중 가장 큰 2496%와 -38%으로 관찰되었으며, 이 결과는 자발 성장법으로 성장된 Bi 나노선의 결정성이 매우 우수한 단결정임을 증명한다. simple two band(STB) 모델을 통해 Bi 나노선의 수직 및 수평 정상 자기 저항(OMR) 거동이 온도에 따른 페르미 준위(Fermi level)와 밴드 겹침(band overlap)등의 전자 구조 변화 및 운반자 농도 변화로 잘 설명된다.

Role of Kupffer Cells in Vasoregulatory Gene Expression During Endotoxemia

  • Kim, Tae-Hoon;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • 제16권4호
    • /
    • pp.306-311
    • /
    • 2008
  • Although hepatic microcirculatory dysfunction occurs during endotoxemia, the mechanism responsible for this remains unclear. Since Kupffer cells provide signals that regulate hepatic response in inflammation, this study was designed to investigate the role of Kupffer cells in the imbalance in the expression of vasoactive mediators. Endotoxemia was induced by intraperitoneal E. coli endotoxin (LPS, 1 mg/kg body weight). Kupffer cells were inactivated with gadolinium chloride ($GdCl_3$, 7.5 mg/kg body weight, intravenously) 2 days prior to LPS exposure. Liver samples were taken 6 h following LPS exposure for RT-PCR analysis of mRNA for genes of interest: endothelin (ET-1), its receptors $ET_A$ and $ET_B$, inducible nitric oxide synthase (iNOS), heme oxygenase (HO-1), and tumor necrosis factor-$\alpha$ (TNF-$\alpha$). mRNA levels for iNOS and TNF-$\alpha$ were significantly increased 31.8-fold and 26.7-fold in LPS-treated animals, respectively. This increase was markedly attenuated by $GdCl_3$, HO-1 expression significantly increased in LPS-treated animals, with no significant difference between saline and $GdCl_3$ groups. ET-1 was increased by LPS. mRNA levels for $ET_A$ receptor showed no change, whereas $ET_B$ transcripts increased in LPS-treated animals. The increase in $ET_B$ transcripts was potentiated by $GdCl_3$. We conclude that activation of Kupffer cells plays an important role in the imbalanced hepatic vasoregulatory gene expression induced by endotoxin.

Impaired Hippocampal Synaptic Plasticity and Enhanced Excitatory Transmission in a Novel Animal Model of Autism Spectrum Disorders with Telomerase Reverse Transcriptase Overexpression

  • Rhee, Jeehae;Park, Kwanghoon;Kim, Ki Chan;Shin, Chan Young;Chung, ChiHye
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.486-494
    • /
    • 2018
  • Recently, we have reported that animals with telomerase reverse transcriptase (TERT) overexpression exhibit reduced social interaction, decreased preference for novel social interaction and poor nest-building behaviors-symptoms that mirror those observed in human autism spectrum disorders (ASD). Overexpression of TERT also alters the excitatory/inhibitory (E/I) ratio in the medial prefrontal cortex. However, the effects of TERT overexpression on hippocampal-dependent learning and synaptic efficacy have not been investigated. In the present study, we employed electrophysiological approaches in combination with behavioral analysis to examine hippocampal function of TERT transgenic (TERT-tg) mice and FVB controls. We found that TERT overexpression results in enhanced hippocampal excitation with no changes in inhibition and significantly impairs long-term synaptic plasticity. Interestingly, the expression levels of phosphorylated CREB and phosphorylated $CaMKII{\alpha}$ were significantly decreased while the expression level of $CaMKII{\alpha}$ was slightly increased in the hippocampus of TERT-overexpressing mice. Our observations highlight the importance of TERT in normal synaptic function and behavior and provide additional information on a novel animal model of ASD associated with TERT overexpression.

Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity

  • Seong-Min Hong;Eun Yoo Lee;Jinho Park;Jiyoun Kim;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권5호
    • /
    • pp.573-582
    • /
    • 2023
  • Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.

Effects of Intraperitoneal N-methyl-D-aspartate (NMDA) Administration on Nociceptive/Repetitive Behaviors in Juvenile Mice

  • Kim, Seonmin;Kim, Do Gyeong;Gonzales, Edson luck;Mabunga, Darine Froy N.;Shin, Dongpil;Jeon, Se Jin;Shin, Chan Young;Ahn, TaeJin;Kwon, Kyoung Ja
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.168-177
    • /
    • 2019
  • Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.

AutoFe-Sel: A Meta-learning based methodology for Recommending Feature Subset Selection Algorithms

  • Irfan Khan;Xianchao Zhang;Ramesh Kumar Ayyasam;Rahman Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1773-1793
    • /
    • 2023
  • Automated machine learning, often referred to as "AutoML," is the process of automating the time-consuming and iterative procedures that are associated with the building of machine learning models. There have been significant contributions in this area across a number of different stages of accomplishing a data-mining task, including model selection, hyper-parameter optimization, and preprocessing method selection. Among them, preprocessing method selection is a relatively new and fast growing research area. The current work is focused on the recommendation of preprocessing methods, i.e., feature subset selection (FSS) algorithms. One limitation in the existing studies regarding FSS algorithm recommendation is the use of a single learner for meta-modeling, which restricts its capabilities in the metamodeling. Moreover, the meta-modeling in the existing studies is typically based on a single group of data characterization measures (DCMs). Nonetheless, there are a number of complementary DCM groups, and their combination will allow them to leverage their diversity, resulting in improved meta-modeling. This study aims to address these limitations by proposing an architecture for preprocess method selection that uses ensemble learning for meta-modeling, namely AutoFE-Sel. To evaluate the proposed method, we performed an extensive experimental evaluation involving 8 FSS algorithms, 3 groups of DCMs, and 125 datasets. Results show that the proposed method achieves better performance compared to three baseline methods. The proposed architecture can also be easily extended to other preprocessing method selections, e.g., noise-filter selection and imbalance handling method selection.