• Title/Summary/Keyword: Dynamic-Link

Search Result 713, Processing Time 0.025 seconds

Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links

  • Lian, Ming;Zhang, Hao;Cheng, Qianqian;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.365-382
    • /
    • 2019
  • In steel frame-tube structures (SFTSs) the application of flexural beam is not suitable for the beam with span-to-depth ratio lower than five because the plastic hinges at beam-ends can not be developed properly. This can lead to lower ductility and energy dissipation capacity of the SFTS. To address this problem, a replaceable shear link, acting as a ductile fuse at the mid length of deep beams, is proposed. SFTS with replaceable shear links (SFTS-RSLs) dissipate seismic energy through shear deformation of the link. In order to evaluate this proposal, buildings were designed to compare the seismic performance of SFTS-RSLs and SFTSs. Several sub-structures were selected from the design buildings and finite element models (FEMs) were established to study their hysteretic behavior. Static pushover and dynamic analyses were undertaken in comparing seismic performance of the FEMs for each building. The results indicated that the SFTS-RSL and SFTS had similar initial lateral stiffness. Compared with SFTS, SFTS-RSL had lower yield strength and maximum strength, but higher ductility and energy dissipation capacity. During earthquakes, SFTS-RSL had lower interstory drift, maximum base shear force and story shear force compared with the SFTS. Placing a shear link at the beam mid-span did not increase shear lag effects for the structure. The SFTS-RSL concentrates plasticity on the shear link. Other structural components remain elastic during seismic loading. It is expected that the SFTS-RSL will be a reliable dual resistant system. It offers the benefit of being able to repair the structure by replacing damaged shear links after earthquakes.

Stability Analysis of a Multi-Link TCP Vegas Model

  • Park, Poo-Gyeon;Choi, Doo-Jin;Choi, Yoon-Jong;Ko, Jeong-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1072-1077
    • /
    • 2004
  • This paper provides a new approach to analyze the stability of a general multi-link TCP Vegas, which is a kind of feedback-based congestion algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas along equilibrium pints, this approach models a multi-link TCP Vegas network in the form of a piecewise linear multiple time-delay system. And then, based on the exactly characterized dynamic model, this paper presents a new stability criterion via a piecewise and multiple delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms of linear matrix inequalities (LMIs).

  • PDF

A study on the optimal design of robot arm (로봇 팔의 최적설계에 관한 연구)

  • 조선휘;김기식;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.515-522
    • /
    • 1991
  • Determining the motion using optimal technique about traveling time and trajectory planning has been studied often in recent years, but the study of determining the optimal robot dimensions is rare, the authors attempt to find out the least driving torques and energy as the optimization of link length ratio referred to 2R SCARA and 3R robot manipulators. For the given linear path with triangular velocity profile, the inverse kinematic and dynamic problems are examined in order to lead into solution of problem, which is suggested for optimal design of link lengths. Accordingly, optimal link length ratio is obtained with respect to each case.

A New Approach for Constant DC Link Voltage in a Direct Drive Variable Speed Wind Energy Conversion System

  • Jeevajothi, R.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.529-538
    • /
    • 2015
  • Due to the high efficiency and compact mechanical structure, direct drive variable speed generators are used for power conversion in wind turbines. The wind energy conversion system (WECS) considered in this paper consists of a permanent magnet synchronous generator (PMSG), uncontrolled rectifier, dc-dc boost converter controlled with maximum power point tracking (MPPT) and adaptive hysteresis controlled voltage source inverter (VSI). For high utilization of the converter's power capability and stabilizing voltage and power flow, constant DC-link voltage is essential. Step and search MPPT algorithm which senses the rectified voltage ($V_{DC}$) alone and controls the same is used to effectively maximize the output power. The adaptive hysteresis band current control is characterized by fast dynamic response and constant switching frequency. With MPPT and adaptive hysteresis band current control in VSI, the DC link voltage is maintained constant under variable wind speeds and transient grid currents respectively.

Novel SRM Drive System Based on the DC-link Current Information (DC-link전류정보를 기반으로 한 새로운 SRM 구동시스템)

  • Kim Ju-Jin;Kim Seong-Gon;Lee Ju-Hwan;Kim Tae-Woong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.6-10
    • /
    • 2004
  • This paper newly proposes the SRM drive system based on DC-link current information, from which the phase currents can be estimated in accuracy and also they can be used in driving SRM instead of the phase currents. Comparing to the general drive system based on the phase current information, it is verified through the simulation(which are peformed by RMxprt and Simplorer) that the proposed SRM drive system has the good performance in dynamic and steady-state responses of the speed control. Using the DC-link current information, all of the multi-phase currents can be easily estimated in driving the SRM.

  • PDF

A study on the control of robotic manipulators with flexibility (탄성을 고려한 로보트 매니플레이터의 제어에 관한 연구)

  • Lee, Si-Bok;Jo, Hyeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.2
    • /
    • pp.23-32
    • /
    • 1988
  • A control system for improving the moving accuracy of robotic manipulators with elastic joints is devloped. The dynamics of manipulator system is splitted into two sub-dynamics; of arm-link and actuator rotor- link, which are coupled statically through joint torque. Two contorl loops are implemented respectively around both sub-dynamic systems. Computed torque algorithm with acceleration feedback is used for the arm-link control loop, and for the actuator rotor-link control loop PID algorithm is adopted. The resulting control system is tested through a series of computer simulation for a PUMA type manipulator, The reaults show good performance of the developed control system for wide range of joint stiffness and moving speed.

  • PDF

Swing Up and Stabilization Control of the Pendubot

  • Yoo, Ki-Jeong;Yang, Dong-Hoon;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.4-71
    • /
    • 2001
  • This paper presents swing up and stabilization control of an underactuated two-link robot called the Pendubot. This device is a two-link planar robot with an actuator at the shoulder, but no actuator at the elbow. The controller swings up first link from its open loop stable equilibrium point to the unstable equilibrium point and then, catches the unactuated second link to balance it there. Two control algorithms are used for this task. Proportional Derivative Control technique is used to design the swing up control. The linear model of Pendubot is obtained by linearizing the nonlinear dynamic equations about the desired equilibrium point and LQR technique is used to design a stabilization controller.

  • PDF

An Integration of Searching Area Extraction Scheme and Bi-directional Link Searching Algorithm for the Urban ATIS Application (도시부 ATIS 효율적 적용을 위한 탐색영역기법 및 양방향 링크탐색 알고리즘의 구현)

  • 이승환;최기주;김원길
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.45-59
    • /
    • 1996
  • The shortest path algorithm for route guidance is implicitly required not only to support geometrical variations of transportation network such as U-TURN or P-TURN but to efficiency search reasonable routes in searching mechanism. The purpose of this paper is to integrate such two requirements ; that is, to allow U-TURN and P-TURN possibilities and to cut down searching time in locating routes between two points (origin and destination) in networks. We also propose a new type of link searching algorithm which can solve the limitation of vine building algorithm at consecutively left-turn prohibited intersections. The test site is a block of Gangnam road network that has some left-turn prohibited and allowed U-TURN intersections. Four models have been identified to be comparatively analyzed in terms of searching efficiency. The Models are as follows : (i) Model 1 - Link Searching Dijkstra Algorithm without Searching Area Extraction (SAE) ; (ii) Model 2 - Link Searching Dijkstra Algorithm with SAE ; (iii) Model 3 - Link Searching Bidirectional Dijkstra Algorithm without SAE ; and (iv) Model 4 - Link Searching Bidirectional Dijkstra Algorithm with SAE. The results of comparative evaluation show that Model 4 can effectively find optimum path faster than any other models as expected. Some discussions and future research agenda have been presented in the light of dynamic route guidance application of the urban ATIS.

  • PDF

Error Analysis of a Parallel Mechanism Considering Link Stiffness and Joint Clearances

  • Park, Woo-Chun;Song, Jae-Bok;Daehie Hong;Shim, Jae-Kyung;Lim, Seung-Reung;Kyungwoo Kang;Park, Sungchul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.799-809
    • /
    • 2002
  • In order to utilize a parallel mechanism as a machine tool component, it is important to estimate the errors of its end-effector due to the uncertainties in parts. This study proposes an error analysis for a new parallel device, a cubic parallel mechanism. For the parallel device, we consider two kinds of errors. One is a static error due to link stiffness and the other is a dynamic error due to clearances in the parts. In this study, we propose a stiffness model for the cubic parallel mechanism under the assumption that the link stiffness is a linear function of the link length. Also, from the fact that the errors of u-joints and spherical joints are changed with the direction of force acting on the link, they are regarded as a part of link errors, and then the error model is derived using forward kinematics. Lastly, both the error models are integrated into the total error, which is analyzed with a test example that the platform moves along a circular path. This analysis can be used in predicting the accuracy of other parallel devices.

A Fair Queuing Algorithm to Reduce Energy Consumption in Wireless Channels (무선 채널의 에너지 소비를 줄이기 위한 공평 큐잉 알고리즘)

  • Kim, Tae-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.893-901
    • /
    • 2007
  • Since real-time multimedia applications requiring duality-of-service guarantees are spreading over mobile and wireless networks, energy efficiency in wireless channels is becoming more important. Energy consumption in the channels can be reduced with decreasing the rate of scheduler's outgoing link by means of Dynamic Modulation Scaling (DMS). This paper proposes a fair queuing algorithm, termed Rate Efficient Fair Queuing (REFQ), in order to reduce the outgoing link's rate, which is based on the Latency-Optimized Fair Queuing algorithm developed to enhance Weighted Fair Queuing (WFQ). The performance evaluation result shows that REFQ does decrease the link rate by up to 35% in comparison with that in WFQ, which results in reducing the energy consumption by up to 90% when applied to the DMS based radio modem.

  • PDF