• Title/Summary/Keyword: Dynamic weight bearing

Search Result 75, Processing Time 0.019 seconds

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

A Study on Dynamic Characteristics of Rotor with Flywheel (慣性車 를 가진 回轉子 의 動特性 에 관한 硏究)

  • 허용정;김병구;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.186-192
    • /
    • 1983
  • The purpose of this study is to determine the general frequency expression for a rotating shaft of uniform cross section, supported by two bearings, and carrying flywheel at the free end. The bearing spacing and the ratio of the weight of flywheel to the total distributed weight are used as parameters. The data have thus been reduced to dimensionless form so that the results are generally applicable for this type of rotor. Frequencies for the first three modes of vibration are determined. Experimental investigation with rotor/flywheel model confirmed the critical speed frequencies lie between analytical models with simply supported-simply supported boundary conditions and spring supported-spring supported boundary conditions.

Acute Effects of Dynamic Stretching and Self-Mobilization of the Ankle Joint on Dorsiflexion Range of Motion, Muscle Strength, and Balance in Healthy Adults

  • Kim, Kyoung-Han;Choi, Yun-Seo;Jeon, Jeongwoo;Hong, Jihoen;Yu, Jaeho;Kim, Jinseop;Kim, Seong-Gil;Lee, Dongyeop
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.63-72
    • /
    • 2022
  • Purpose : Several studies have investigated the effects of dynamic stretching (DS) and self-mobilization (SM), however, studies comparing the two interventions are rare. Therefore, the purpose of this study was to compare the effects of DS and SM on ankle strength, dorsiflexion range of motion (DFROM), and balance to determine which is superior. Methods : Thirty-two healthy young adults participated in this study. Participants were randomly assigned to two groups (SM and DS). DS was performed for the purpose of stretching the medial gastrocnemius muscle. For the SM group, ankle joint SM was performed in three ways. For all participants, the following measurements were performed as pre- and post-tests: isometric strength of dorsiflexor and plantar flexor, weight-bearing lunge test (WBLT) to evaluate DFROM, Tetrax system to evaluate static balance, and y balance test (YBT) to evaluate dynamic balance. Differences before and after the intervention within each group were compared using paired t-test. Also, the variable's variation was compared between groups using an independent t-test. Results : Significant differences were found in ankle dorsiflexor strength, WBLT, YBT, weight distribution index (WDI) (pillow and opened eyes; PO), and stability index (ST) (normal and closed eyes; NC) before and after intervention in the SM group (p<.05). In the DS group, significant differences were found in ankle dorsiflexor and plantar flexor strength, WBLT, YBT anterior, WDI (normal and opened eyes; NO, PO), and ST (NO, NC, PO, pillow and closed eyes) before and after the intervention (p<.05). Ankle plantar flexor strength and WDI (PO) were significantly different between groups. Conclusion : Based on the results of this study, DS or SM can be considered as a possibility for selective use according to variables for improving ankle joint function (DFROM, muscle strength, balance).

Improvement Effect and Field Application of Dynamic Replacement Using Crushed Rock (암버력 매립층의 동치환공법 현장 적용성 및 개량효과에 관한 연구)

  • Lee, In-Hwan;Lee, Chul-Hee;Shin, Eun Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • The purpose of this study is to examine the effect of soft ground improvement by dynamic replacement with utilizing crushed rock. In order to understand the ground improvement effect when applying dynamic replacement method with crushed rock, the laboratory test and field test were performed. The internal friction angle and apparent cohesion were derived through direct shear test. The dynamic replacement characteristics were identified by analyzing the weight, drop, and number of blows needed for dynamic replacement. Through the field plate bearing test and density test, the bearing capacity and settlement of the improved ground were measured, and the numerical analysis were conducted to analyze the behavior of the improved ground. In this study, it proposes modified soil experimental coefficient(CDR) to 0.3~0.5 in the dynamic replacement method with crushed rock. Also when applying the dynamic replacement method using crushed rock, the particle size range is less than 100 mm, D90 is less than 80 mm and D15 is more than 30 mm.

The Effect of a Proximal and Distal Tibiofibular Joint Manipulation on Dorsiflexion and Balance in Individuals with a History of Lateral Ankle Sprain

  • Chae, Yun-Won;Park, Ji-Won;Nam, Ki-Seok
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.2
    • /
    • pp.95-100
    • /
    • 2017
  • Purpose: This study aimed to evaluate the changes in dorsiflexion and balance following proximal and distal tibiofibular joint manipulation in individuals with a history of lateral ankle sprain (LAS). Methods: Fifteen participants with a history of unilateral LAS, exhibiting a restriction in ankle dorsiflexion were included in this study. LAS ankle received a manipulation to the proximal and distal tibiofibular joint, while the opposite control ankle received no manipulation intervention. The outcome measures included ankle dorsiflexion and balance. Ankle dorsiflexion was measured using weight-bearing lunge test. Static and dynamic balances were measured using the overall, anterioposterior, and mediolateral balance index via the biodex balance system. Measurements were obtained prior to and following manipulation. Results: This study showed that ankle dorsiflexion and dynamic balance were improved following the manipulation compared to those prior to the manipulation (p<0.05). There was no significant change in static balance (p>0.05). Conclusion: The joint manipulation technique applied to the ankle of those with a history of LAS appears to improve ankle dorsiflexion and dynamic balance. This suggest that a manipulation to the proximal and distal tibiofibular joint could be provided as preliminary data regarding the prophylactic effects of recurrent LAS.

Effects of Extracorporeal Shock Wave Therapy on Ankle Function, Range of Motion, and Dynamic Balance in Patients with Chronic Ankle Instability

  • Lee, Su Bin;Kwon, Jung Won;Yun, Seong Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.3
    • /
    • pp.91-97
    • /
    • 2022
  • Purpose: This study investigated the short-term effectiveness of extracorporeal shock wave therapy (ESWT) on pain, the ankle instability, the ankle function, dorsiflexion range of motion (ROM), and dynamic balance in patients with chronic ankle instability (CAI). Methods: Eighteen participants were divided into an experimental (n=9) and control group (n=9). The ESWT in the experimental group was applied to the lateral collateral ligament in combination with the tibialis anterior whereas the ESWT was applied to the lateral collateral ligament of the ankle alone in the control group. Pain, the ankle instability, the ankle function, dorsiflexion ROM, and dynamic balance were measured using the Visual analog scale, Cumberland ankle instability tool, American Orthopedic Foot and Ankle Society ankle-hindfoot score, weight-bearing lunge, and Y-balance test, before and after ESWT intervention. Results: Significant interactions (group × time) and time effects were observed in the dorsiflexion ROM and dynamic balance. Bonferroni's post-hoc analysis showed that the experimental group revealed a more significant change in dorsiflexion ROM and dynamic balance than the control group. There was a significant time effect in the pain, the ankle instability, and the ankle function, but no significant interaction (group × time) was observed. Conclusion: The ESWT could improve the pain, ankle instability, ankle function, dorsiflexion ROM, and dynamic balance in patients with CAI. Furthermore, the ESWT combined with lateral ankle ligaments and tibialis anterior more improves the dorsiflexion ROM and dynamic balance.

The Introduction of Shaft Alignment Calculation for very Large Container Vessel (초대형 콘테이너선의 축계정렬 계산 사례 소개)

  • Kang Dong Chun;Park Kun Woo;Kim Kyoung Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.138-143
    • /
    • 2005
  • Recently, it is much more required to approach the accurate shaft alignment analysis according to the tendency of active showing in large container vessel and that of the heavy weight of propeller in connection with it. Shaft alignment calculation lies upon how the pressure apply on bearings properly in operation of main engine and how the stress of shaft puts within that of limit of bearing material and how the movement of shaft is prospected owing to propeller forces and moments. Therefore, we have conducted the shaft alignment calculation of very large container vessel considering the deformation of hull structure and the propeller forces and moments and the static and dynamic condition of shaft. The calculation results show the pressure distribution of aft bush and the movement of shaft in bearing. The shaft alignment calculation helps the stable application of shaft alignment, which was proved in sea trial.

  • PDF

Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading

  • Esfandiari, Soheil;Esfandiari, Javad
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • In most cases strengthening reinforced concrete columns exposed to high strain rate is to be expected especially within weak designed structures. A special type of loading is instantaneous loading. Rapid loading can be observed in structural columns exposed to axial loads (e.g., caused by the weight of the upper floors during a vertical earthquake and loads caused by damage and collapse of upper floors and pillars of bridges).Subsequently, this study examines the behavior of reinforced concrete columns under rapid loading so as to understand patterns of failure mechanism, failure capacity and strain rate using finite element code. And examines the behavior of reinforced concrete columns at different support conditions and various loading rate, where the concrete columns were reinforced using various counts of FRP (Fiber Reinforcement Polymer) layers with different lengths. The results were compared against other experimental outcomes and the CEB-FIP formula code for considering the dynamic strength increasing factor for concrete materials. This study reveals that the finite element behavior and failure mode, where the results show that the bearing capacity increased with increasing the loading rate. CFRP layers increased the bearing capacity by 20% and also increased the strain capacity by 50% through confining the concrete.

The Effects of Foot Intrinsic Muscle and Tibialis Posterior Strengthening Exercise on Plantar Pressure and Dynamic Balance in Adults Flexible Pes Planus

  • Lee, Da-bee;Choi, Jong-duk
    • Physical Therapy Korea
    • /
    • v.23 no.4
    • /
    • pp.27-37
    • /
    • 2016
  • Background: In previous studies regarding flexible pes planus, Foot orthosis, special shoes have been used as interventions for correcting malalignment and intrinsic muscles strengthening exercise have been regarded as interventions for foot function and supporting medial longitudinal arch during walking. However, some recent studies reported that strengthening extrinsic muscles as well as intrinsic muscles is more effective and active intervention for flexible pes planus. In particular, the tibialis posterior muscle of foot extrinsic muscles plays essential roles in maintaining the medial longitudinal arch during dynamic weight bearing and balance. In addition this muscle acts longer than other supination muscles during the stance phase in the gait cycle. Objects: This study aimed to investigate the effect of foot intrinsic muscle and tibialis posterior muscle strengthening exercise for plantar pressure and dynamic balance in adults with flexible pes planus. Methods: 16 young flexible pes planus adults (7 males, 9 females) were recruited and were randomized into two groups. The experimental group performed foot intrinsic muscle and tibialis posterior muscle strengthening training, the control group performed only foot intrinsic muscle strengthening training. All groups received strengthening training for 30 minutes five times a week for six weeks. Results: The experimental group had significantly lower plantar pressure of medial heel area than the control group in stand (p<.05). The experimental group had significantly higher dynamic balance ability than control group (p<.05). Conclusion: The results of this study provide evidence to suggest that foot intrinsic muscle and tibialis posterior muscle of extrinsic muscle strengthening exercises may improve plantar pressure distribution and dynamic balance ability in adults with flexible pes planus.

Effect of Propeller Eccentric Thrust Change on Propusion Shafting System (프로펠러 편심추력변동이 축계안정성에 미치는 영향 연구)

  • Lee, Ji-woong;Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1082-1087
    • /
    • 2021
  • The propeller shaft has different pattern of behaviors at each static, dynamic, and transient condition to a ship shaft system due to the effects of propeller weight and eccentric thrust, which increases the potential risk of bearing failure by causing local load variations. To prevent this, the various research of the shafting system has been conducted with the emphasis on optimizing the relative slope and oil film retention between propeller shaft and stern tube bearing at quasi-static condition, mainly with respect to the Rules for the Classification of Steel Ships. However, to guarantee a stability of the shafting system, it is necessary to consider the dynamic condition including the transient state due to the sudden change in the stern wakefield during rudder turn. In this context, this study cross-validated the ef ect of propeller shaft behavior on the stern tube bearing during port turn operation, which is a typical transient condition, by using the strain gauge method and displacement sensor for 50,000 DWT medium class tanker. And it was confirmed that the propeller eccentric thrust change showing relief the load of the stern tube bearing.