• 제목/요약/키워드: Dynamic viscosity

검색결과 324건 처리시간 0.022초

비이온성 미셀용액과 수중유형 마이크로에멀젼계의 특성 및 수단 IV의 가용화 (Characteristics of Non-ionic Micellar and O/W Microemulsion Systems and Solubilization of Sudan IV)

  • 지웅길;황성주;장은옥;현종목
    • 약학회지
    • /
    • 제39권5호
    • /
    • pp.495-505
    • /
    • 1995
  • The O/W microemulsion systems were made from 2 or 4% (w/w) oil (soybean oil, olive oil or isopropyl myristate) and 10, 15 or 20% (w/w) Brij 96. They were compared with micellar solution of equivalent surfactant concentration m therms of physicochemical properties, and the solubilization of sudan IV. They were characterized by dynamic light scattering, stability, surface tension, viscosity and rheogram. The mean diameters of O/W microemulsion systems were 10-15nm, and those of Brij 96 micellar solutions were 18-19 nm. Both of them were monodisperse systems. The O/W microemulsion systems showed Newtonian flow and their apparent viscosities were lower than those of micellar solutions. The surface tensions of O/W microemulsion systems were increased or decreased depending on the types of oil used, when compared with those of micellar solutions. The O/W microemulsion systems were very stable, and did not show any flocculation or aggregation. Their mean diameters were not changed after three months. But oxidation was observed in microemulsions without nitrogen gas at high temperature. There was a significant improvement in the sudan IV solubffimtion in micromulsion compared with that m the micellar solution containing equivalent concentration of surfactant. The size distribution and mean diameters of O/W micromulsions were not changed when sudan IV was solubilized.

  • PDF

비대칭 그루브 저널 베어링으로 지지되는 하드디스크 스핀들 시스템의 동특성 해석 (Analysis of the Dynamic Characteristics of a HDD Spindle System Supported by Asymmetrically Grooved Journal Bearings)

  • 이상훈;김학운;장건희;김철순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.748-752
    • /
    • 2004
  • Fluid dynamic bearings (FDBs) have been replacing ball bearings of the HDD spindle motor very rapidly. But there are several demerits of HDB, such as high friction torque, variable viscosity of the fluid lubricant depending on operating temperature, low stiffness, and etc. Eccentricity is one of the major parameters which affects the static and dynamic characteristics. As the static eccentricity is larger, the stiffness and the damping coefficients become bigger. But friction torque is relatively unaffected by the static eccentricity. This research proposes a new type of journal bearing with asymmetric journal grooves which results in better dynamic characteristics. The static and dynamic characteristics of the new journal bearing are investigated by solving the Reynolds' equation with FEM, and the transient analysis is performed to predict the dynamic behavior of rotor by solving the equations of motion of a HDD spindle system with Runge-Kutta method. The result shows that the proposed Journal bearings have much bigger stiffness and damping coefficients compared with the conventional symmetric ones. And consequently, it has smaller whirl radius and tilting angle.

  • PDF

Dynamic analysis of ACTIVE MOUNT using viscoelastic-elastoplastic material model

  • Park, Taeyun;Jung, Wonuk
    • International Journal of Reliability and Applications
    • /
    • 제17권2호
    • /
    • pp.137-147
    • /
    • 2016
  • The engine mount of a car subjected to a pre-load related to the weight of the engine, and acts to insulate the vibration coming from the engine by moving on large or small displacement depending on the driving condition of the car. The vibration insulation of the engine mount is an effect obtained by dissipating the mechanical energy into heat by the viscosity characteristic of the rubber and the microscopic behavior of the additive carbon black. Therefore, dynamic stiffness from the intrinsic properties of rubber filled with carbon black at the design stage is an important design consideration. In this paper, we introduced a hyper-elastic, visco-elastic and elasto-plastic model to predict the dynamic characteristics of rubber, and developed a fitting program to determine the material model parameters using MATLAB. The dynamic characteristics analysis of the rubber insulator of the ACTIVE MOUNT was carried out by using MSC.MARC nonlinear structural analysis software, which provides the dynamic characteristics material model. The analysis results were compared with the dynamic characteristics test results of the rubber insulator, which is one of the active mount components, and the analysis results were confirmed to be valid.

전자선 조사가 Poly(lactic acid) 및 개질된 Poly(lactic acid)의 유변학적 특성에 미치는 영향 (Effects of Irradiation of Electron Beam on the Rheological Properties of Poly(lactic acid) and Chemically Modified Poly(lactic acid))

  • 신부영;강경수;조규순;한도흥;송정섭;이상일;이태진;김봉식
    • 폴리머
    • /
    • 제31권3호
    • /
    • pp.269-272
    • /
    • 2007
  • 본 연구는 생분해성 고분자인 폴리락틱에시드(Poly(lactic acid; PLA)의 가공성을 향상시키는 연구의 일환으로 순수 PLA, 반응압출법에 의한 화학적으로 개질된 PLA 및 기능성 단량체를 함유한 PLA에 전자선을 조사하여 PLA를 개질한 후 유변학적 특성을 조사하였다. 유변학적 특성은 복합점도와 log G' vs. log G" 선도를 이용하여 해석 분석 비교하였다. 그 결과 전자선 조사로 개질된 순수 PLA 및 화학적으로 개질된 PLA의 복합점도는 전자선 조사량에 따라 감소하는 경향을 보였지만, 기능성단량체가 첨가된 PLA는 전자선 조사에 의해 복합점도가 증가하다가 감소하는 경향을 보였다.

감귤류 펙틴 용액의 리올리지 특성 (Rheological Properties of Citrus Pectin Solutions)

  • 황재관
    • 한국식품과학회지
    • /
    • 제27권5호
    • /
    • pp.799-806
    • /
    • 1995
  • 고유점도가 3.75 dL/g인 감귤류 펙틴 용액의 전단점도 및 점탄성에 대한 농도의존성을 연구하였다. 전형적인 자수법칙 흐름 현상이 2.0% 이상의 펙틴 농도에서 관찰되었으며, 전단점도의 전단속도 의존성은 농도의 증가에 따라 더욱 뚜렷하게 나타났다. ${\eta}_{sp.o}$$C[\eta]$를 양대수 좌표에 그렸을 때 묽은 영역에서 진한 영역으로의 전이를 나타내는 $C^{*}[\eta]$는 약 4.0이었으며, 이때 ${\eta}_{sp.o}$의 값은 약 10.0을 나타내었다. 묽은 용액$(C[\eta]과 진한 용액$(C[\eta]>C^{*}[\eta])$에서 ${\eta}_{sp.o}$ $C[\eta]$의 기울기는 각각 1.1과 4.5였다. 전단점도를 ${\eta}/{\eta_0}$${\gamma}/{\gamma}_{0.8}$에 대하여 그렸을 때 $2{\sim}5%$의 농도에서는 잘 중첩되었으나, 6%의 고농도에서는 중첩곡선에서 벗어나는 현상을 보였다. 펙틴 용액의 점탄성을 조사한 결과 전 농도범위에서 손실탄성률$(G^{\prime\prime})$의 값이 저장탄성률$(G^\prime)$보다 훨씬 높은 값을 보여 점성이 전체 점탄성을 지배하는 것으로 나타났다. 저 농도에서 전단점도는 복소점도와 거의 비슷한 값을 보여 Cox-Merz 법칙에 잘 부합하였으나, 농도가 높아질수록 두 값은 차이를 보였다.

  • PDF

Effect of Storage Temperature on Dynamic Rheological Properties of Hot Pepper-Soybean Pastes Mixed with Guar Gum and Xanthan Gum

  • Choi, Su-Jin;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.496-499
    • /
    • 2007
  • Dynamic rheological properties of hot pepper-soybean paste (HPSP) samples mixed with guar gum and xanthan gum were evaluated at different storage temperatures (5, 15, and $25^{\circ}C$) by using a dynamic rheometer. Magnitudes of storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) in the HPSP-gum mixtures increased with an increase in storage temperature from 5 to $25^{\circ}C$. After 3-month storage at 5 and $15^{\circ}C$ there were no significant changes in dynamic rheological properties. The increase in dynamic moduli (G', G", and ${\eta}^*$) with storage temperature is less pronounced at HPSP-xanthan gum mixtures in comparison to HPSP-guar gum mixtures. The slopes of G' (0.16-0.18) of HPSP-guar gum mixtures at 3-month storage were much higher than that (0.10) at 0-month storage, indicating that the elastic properties of the HPSP-guar gum mixtures can be decreased after 3-month storage. However, there were not much differences between the slopes of G' in HPSP-xathan gum mixtures. Xanthan gum was observed to be better structure stabilizer for HPSP during storage.

난류유동의 큰 에디 모사를 위한 아격자 모델 (On Subgrid-Scale Models for Large-Fddy Simulation of Turbulent Flows)

  • 강상모
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1523-1534
    • /
    • 2000
  • The performance of a number of existing dynamic subgrid-scale(SGS) models is evaluated in large-eddy simulations(LES) of two prototype transitional and turbulent shear flows, a planar jet and a channel flow. The dynamic SGS models applied include the dynamic Smagorinsky model(DSM);Germano et al. 1991, Lully 1992), the dynamic tow-component model(DTM; Akhavan et al. 2000), the dynamic mixed model(DMM;Zang et al, 1993). and the dynamic two-parameter model(DTPM; Salvetti & Banerjee 1995). The results are compared with those for DNS for their evaluation. The LES results demonstrate the superior performance of DTM with use of a sharp cutoff filter and DMM with use of a box filter, as compared to their respect counterpart DSM, in predicting the mean statistics, spectra and large-scale structure of the flow, Such features of DTM and DMM derive from the construction of the models in which tow separate terms are included to represent the SGS interactions; a Smagorinsky edd-viscosity term to account for the non-local interactions, and a local-interaction term to account for the nonlinear dynamics between the resolved and subgrid scales in the vicinity of the LES cutoff. As well, overall the SGS models using a sharp cutoff filter are more successful than those using a box filter in capturing the statistics and structure of the flow. Finally, DTPM is found to be compatible or inferior to DMM.

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

Rheology of hydrophobic-alkali-soluble-emulsions (HASE) and the effects of surfactants

  • Lau, A.K.M.;Tiu, C.;Kealy, T.;Tam, K.C.
    • Korea-Australia Rheology Journal
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2002
  • Steady and dynamic shear properties of two hydrophobically modified alkali soluble emulsions (HASE), NPJI and NPJ2, were experimentally investigated. At the same polymer concentration, NPJ1 is appreciably more viscous and elastic than NPJ2. The high hydrophobicity of NPJ1 allows hydrophobic associations and more junction sites to be created, leading to the formation of a network structure. Under shear deformation, NPJ1 exhibits shear-thinning behaviour as compared with Newtonian characteristics of NPJ2. NPJ1 and NPJ2 exhibit a very high and a low level of elasticity respectively over the frequency range tested. For NPJ1, a crossover frequency appears, which is shifted to lower frequencies and hence, longer relaxation times, as concentration increases. Three different surfactants anionic SDS, cationic CTAB, and non-ionic TX-100 were employed to examine the effects of surfactants on the rheology of HASE. Due to the different ionic behaviour of the surfactant, each type of surfactant imposed different electrostatic interactions on the two HASE polymers. In general, at low surfactant concentration, a gradual increase in viscosity is observed until a maximum is reached, beyond which a continuous reduction of viscosity ensues. Viscosity development is a combined result of HASE-surfactant interactions, accompanied by constant rearrangement of the hydrophobic associative junctions, and electrostatic interactions.

Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites

  • Lee, Seung-Hwan;Youn, Jae-Ryoun
    • Advanced Composite Materials
    • /
    • 제17권3호
    • /
    • pp.191-214
    • /
    • 2008
  • Polypropylene/layered silicate nanocomposites containing maleic anhydride grafted polypropylene were prepared by melt compounding and their rheological behavior was investigated in shear flow. Transient and steady shear flows were simulated numerically by using the K-BKZ integral constitutive equation along with experimentally determined damping functions under dynamic oscillatory and step strain shear flows. Nonlinear shear responses were predicted with the K-BKZ constitutive equation using two different damping functions such as the Wagner and PSM models. It was observed that PP-g-MAH compatibilized PP/layered silicate nanocomposites have stronger and earlier shear thinning and higher steady shear viscosity than pure PP resin or uncompatibilized nanocomposites at low shear rate regions. Strong damping behavior of the PP/layered silicate nanocomposite was predicted under large step shear strain and considered as a result of the strain-induced orientation of the organoclay in the shear flow. Steady shear viscosity of the pure PP and uncompatibilized nanocomposite predicted by the K-BKZ model was in good agreement with the experimental results at all shear rate regions. However, the model was inadequate to predict the steady shear viscosity of PP-g-MAH compatibilized nanocomposites quantitatively because the K-BKZ model overestimates strain-softening damping behavior for PP/layered silicate nanocomposites.