• Title/Summary/Keyword: Dynamic ultrasound

Search Result 106, Processing Time 0.024 seconds

Symptomatic Hallucal Interphalangeal Sesamoid Bones Successfully Treated with Ultrasound-guided Injection - A Case Report -

  • Shin, Hye Young;Park, Soo Young;Kim, Hye Young;Jung, Yoo Sun;An, Sangbum;Kang, Do Hyung
    • The Korean Journal of Pain
    • /
    • v.26 no.2
    • /
    • pp.173-176
    • /
    • 2013
  • The hallucal interphalangeal sesamoid bone is usually asymptomatic, but it is not uncommon for it to be symptomatic in cases of undue pressure, overuse, or trauma. Even in symptomatic cases, however, patients often suffer for extended periods due to misdiagnosis, resulting in depression and anxiety that can steadily worsen to the extent that symptoms are sometimes mistaken for a somatoform disorder. Dynamic ultrasound-guided evaluations can be an effective means of detecting symptomatic sesamoid bones, and a simple injection of a small dose of local anesthetics mixed with steroids is an easily performed and effective treatment option in cases, for example, of tenosynovitis.

Postoperative Ultrasound Findings of the Rotator Cuff Tendon after Arthroscopic Repair of a Rotator Cuff Tear (회전근개 파열의 수술적 치료 후 회전근개 초음파 소견)

  • Kwon, Dong Rak
    • Clinical Pain
    • /
    • v.19 no.2
    • /
    • pp.64-69
    • /
    • 2020
  • Ultrasound (US) imaging is an efficient, easy to use, rapid, dynamic, noninvasive, with rare side-effects and inexpensive tool allowing for facilitated diagnosis and management of the painful shoulder. It also has advantages over other imaging modalities in the evaluation of the postoperative shoulder for rotator cuff integrity and correct anchor and suture placement, as well as rotator cuff analysis following repair surgery. Early postoperative tendons frequently had a hypo- echoic echo texture and the absence of a fibrillar pattern, which might be misinterpreted as recurrent tears. however, these features often normalized into tendons with an increased echo texture and the reappearance of a fibrillar pattern at 6 months. Based on these sequential findings, the US findings within 3 months after surgery should be interpreted with caution to accurately understand and monitor the repaired tendon status.

Oribicularis Oris Muscle Defects in Philtral Deformities in the Repaired Cleft Lip (구순열 수술 후 인중의 변형과 구륜근 결손)

  • Kim, Suk-Wha;Jeong, Yeon-Woo;Cheon, Jung-Eun;Park, Chan-Young;Oh, Myung-June;Kim, Jung-Hong;Choi, Tae-Hyun
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.427-432
    • /
    • 2010
  • Purpose: The purpose of this study is to estimate muscle defect by ultrasonography in the patients with secondary deformities of the lip. We investigated the association between the muscle defect in the repaired cleft lip and the philtral appearance not only at resting state but also maximal puckering. Methods: From December 2006 to November 2007, 52 children were evaluated after primary or secondary cheiloplasty. Digital photographs were taken both from the front and both three quarter views in repose and at maximal pucker. Video clips were also taken in repose and at maximal pucker. A panel of four, scored the philtral ridge and dimple seen on these photographs and videos by using two visual analog scales. Eminence of the philtral ridge was scored by a 5 point grading scale, from "conspicuous groove" to "normal philtral ridge" and the philtral dimple was scored by 3 point grading scale, from "no dimple" to "prominent dimple". Ultrasound images of the upper lip were made using a linear array transducer at the resting position of the lip and evaluated by a single radiologist. Results: The philtral ridge eminence scored $2.79{\pm}0.54$ and $1.40{\pm}0.53$ at resting and maximal pucker, correlating with "flat" and "conspicous groove". The philtral dimpling scored $1.44{\pm}0.53$ and $2.27{\pm}0.66$ at resting and maximal pucker, correlating with "no dimple" and "slight dimple". Ultrasound imaging showed the average muscle dehiscence to be $3.78{\pm}2.14$ mm at resting position. Correlation between the muscle defect in ultrasound imaging and philtral ridge eminence at rest was statistically significant (p<0.050), but was not significant (p=0.756) at maximal pucker using Spearman's rank correlation. Correlation between the muscle defect in ultrasound imaging and philtral dimpling was not statistically significant both at rest (p=0.920) and at maximal pucker (p=0.815) using Spearman's rank correlation. Conclusion: Quantitative assessment of the muscle defect using ultrasonography correlates with the static philtral appearance, but does not correlate with the dynamic appearance. Also, the size of the muscle defect does not show any correlation with the philtral dimpling. Our findings reveal that ultrasound imaging partially reflect static appearance of philtrum but cannot reflect dynamic appearance and suggest the need for further research to evaluate dynamic appearance.

Dynamic Parameter Visualization and Noise Suppression Techniques for Contrast-Enhanced Ultrasonography (조영증강 초음파진단을 위한 동적 파라미터 가시화기법 및 노이즈 개선기법)

  • Kim, Ho-Joon
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.910-918
    • /
    • 2015
  • This paper presents a parameter visualization technique to overcome the limitation of the naked eye in contrast-enhanced ultrasonography. A method is also proposed to compensate for the distortion and noise in ultrasound image sequences. Meaningful parameters for diagnosing liver disease can be extracted from the dynamic patterns of the contrast enhancement in ultrasound images. The visualization technique can provide more accurate information by generating a parametric image from the dynamic data. Respiratory motions and noise from micro-bubble in ultrasound data may cause a degradation of the reliability of the diagnostic parameters. A multi-stage algorithm for respiratory motion tracking and an image enhancement technique based on the Markov Random Field are proposed. The usefulness of the proposed methods is empirically discussed through experiments by using a set of clinical data.

Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound (초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가)

  • Choi, Ha-Jin;Kim, Ryul-Ri;Lee, Jong-Suk;Min, Ji-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.56-64
    • /
    • 2021
  • Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facility performance evaluation (2020), the quality of cover concrete and the freeze-thaw (FT) repetition cycle were newly suggested for concrete durability assessment. The quality of cover concrete should be evaluated by the rebound hammer test and the FT repetition cycle should be also considered in the deterioration environmental assessment. This study suggested the application of fast dynamic based nonlinear ultrasound method to monitor initial micro-scale damage under freezing and thawing environment. Concrete specimens were fabricated with different water-cement ratios (40%, 60%) and air contents (1.5% and 3.0%). The compressive strength, rebound number, relative dynamic modulus, and nonlinear ultrasound were measured with different FT cycles. The scanning electron microscopy was also performed to investigate the micro-scale FT damage. As a result, both the rebound number and the relative dynamic modulus had difficulty to detect early damage but the proposed method showed a potential to detect initial micro-scale damage and predict the FT resistance performance of concrete.

An Application of High-Power Ultrasound to Rubber Recycling

  • Hong, Chang-Kook;Isayev, A.I.
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.103-121
    • /
    • 2003
  • The application of powerful ultrasound to rubber recycling is a very recent field of study. An ultrasonic field creates high frequency extension-contraction stresses by acoustic cavitation. The breakdown of rubber network occurs primarily around pulsating cavities due to the highest level of strain produced by high-power ultrasound. Stronger reductions of cross-link density were observed at a higher pressure, indicating an important role of pressure during ultrasonic recycling. Visible bubbles were observed during ultrasonic treatment as a proof of acoustic cavitation. Shearing effect has a significant influence on improving the efficiency of ultrasonic treatment. After the ultrasonic treatment, the cross-link densities of NR/SBR blends were lower than those of NR and SBR due to the reduced degree of unsaturation and chemical reactions. Carbon black fillers increase the probability of bond scission during ultrasonic treatment, due to the restricted mobility. The mechanical properties of ground tire rubber (GRT)/HDPE blends were improved by ultrasonic treatment and dynamic revulcanization. Ultrasonic treatment of GRT in the presence of HDPE matrix was found to give better mechanical properties due to the chemical reactions between rubber and plastic phases.

Simulation of Excitation and Propagation of Pico-Second Ultrasound

  • Yang, Seungyong;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.457-466
    • /
    • 2014
  • This paper presents an analytic and numerical simulation of the generation and propagation of pico-second ultrasound with nano-scale wavelength, enabling the production of bulk waves in thin films. An analytic model of laser-matter interaction and elasto-dynamic wave propagation is introduced to calculate the elastic strain pulse in microstructures. The model includes the laser-pulse absorption on the material surface, heat transfer from a photon to the elastic energy of a phonon, and acoustic wave propagation to formulate the governing equations of ultra-short ultrasound. The excitation and propagation of acoustic pulses produced by ultra-short laser pulses are numerically simulated for an aluminum substrate using the finite-difference method and compared with the analytical solution. Furthermore, Fourier analysis was performed to investigate the frequency spectrum of the simulated elastic wave pulse. It is concluded that a pico-second bulk wave with a very high frequency of up to hundreds of gigahertz is successfully generated in metals using a 100-fs laser pulse and that it can be propagated in the direction of thickness for thickness less than 100 nm.

The Difference of the Changes of Images on Ultrasound Scanner Setting Parameters

  • Kang, Hae-Kyung;Kim, Youn-Min;Kim, Hyun-Soo;Lee, Sung-Hee;Cho, Se-Youn;Lyu, Young-Eun;Jung, In-A
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.81-87
    • /
    • 2010
  • The setting parameters of ultrasound scanner give influences to change of image. Sonographers have used a Matlab program to make Low Contrast Sensitivity(LCS) value and compared original images in order to evaluate the use of the supersonic diagnosis machinery. We confirmed the change of image in Grayscale values using Photoshop program. Experiment equipment of our research used A Medison Accuvix V10, A Multi-Tissue Ultrasound Phantom(040 GSE) of CHRIS Company, A Adobe Photoshop CS4 Program, A Convex Probe, A USB memory stick, A Probe Fixation Equipment. The method used Gain, Dynamic Range(DR) of the setting parameters of ultrasound scanner and researched Gain and DR was set to 10 dB. We changed the different settings to see the changes of images using Grayscale values of a Photoshop program about tissue images of a phantom. This study evaluated DR and Gain whether it is an image controller to get the optimum contrast to produce an image to see the how effect on the images. We did not use Gateway in supersonic diagnosis machinery. We can easily open to open the files through Photoshop program before we get Digital Imaging and Communications in Medicine(DICOM) files use USB memory stick in supersonic diagnosis machinery. When we diagnosed the lesion of the patient with ultrasound, the contrast and the Gray scale value of image are very important. In this research, we determined the optimum setting parameters that provided useful information to diagnose disease and evaluated the change of improved images.

  • PDF

Automated Measurement System of Carotid Artery Intima-Media Thickness based on Dynamic Programming (다이나믹 프로그래밍 기반 경동맥 내막-중막 두께 자동측정 시스템)

  • Lee, Yu-Bu;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.1
    • /
    • pp.21-29
    • /
    • 2007
  • In this paper, we present a method of detecting the boundary of the intima-media complex for automated measurement based on dynamic programming from carotid artery B-mode ultrasound images and then show the experimental results. We apply the dynamic programming for determining the optimal locations that a cost function is minimized. The cost function includes cost terms which are representing image features such as intensity, intensity gradient and geometrical continuity of the vessel interfaces. Moreover, we improve the boundary continuity by applying the B-spline to smooth the rough boundary due to noise such as speckle, dropout and weak edges. The proposed method has obtained more accurate reproducible results than conventional edge-detection by considering multiple image features and ensures efficient automated measurement by solving the problems of the inter- and intra-observer variability and its inefficiency due to manual measurement.

  • PDF

Evaluation of Quantitative Image Quality using Frequency and Parameters in the Ultrasound Image (초음파영상에서 주파수와 파라미터를 이용한 정량적 영상평가)

  • Kim, Changsoo;Kang, Se Sik;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.247-253
    • /
    • 2016
  • Ultrasound devices diagnose many disease, which is widely used, can not be standardized quantitative evaluated in order to evaluate sonography image of quality. Therefore, in this papers, aims to get correct image in order to accurate diagnosis by figuring out the appropriate parameter based on each target by measuring distortion which results in the analyzation of the sensitivity of SNR and the histogram of signal by manipulating parameter of 8 mm target in ATS-539 multipurpose phantom. Equipment using Acuson sequoia 512, convex probe and utilizes multi-objective phantom. experiment method is that first you put the phantom on the flat and acquire 85 sheets of image, changing frequency(2,3,4 MHz, harmonic 3, 4, 4.5 MHz), Focus(2, 4, 6 unit), and Dynamic Range(58, 68, 78, 88, 98) for a 8 mm structure. through the Image J program. The sensitivity angle of 8mm target through Image J program is gauged by each separate target SNR and the distorted angle subtract and measure Histogram of background from Histogram of signal and take top 40% from the given result value above. According to parameter variation we found out proper parameter by acquiring SNR of sensitivity and distortion data for aspect of transition. The more this findings have Focus, the lower distortion value and at 4 MHz frequency this result have high SNR and low distortion value. Dynamic Range got an appropriate image on 88 and 98. It is considered on the basis of the experimental data, the probability of disease diagnosis will get higher.