• Title/Summary/Keyword: Dynamic to Static Ratio

Search Result 362, Processing Time 0.028 seconds

Static Gait Generation of Quadruped Walking Robot (4각 보행 로봇의 정적 걸음새 생성)

  • Kim, Nam-Woong;Sin, Hyo-Chol;Kim, Kug-Weon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.217-222
    • /
    • 2007
  • This paper describes a static gait generation process and a mechanical design process of leg mechanisms for quadruped robots. Actually robot walking is realized with the joint motion of leg mechanisms. In order to calculate the time-angle trajectories for each joint of leg mechanisms, we generate end-tip trajectories with time for each leg in the global inertial coordinate system intuitively, followed by coordinate transformations of the trajectories into the local coordinates system fixed in each leg, finally the angle-time trajectories of each joint of leg mechanisms are obtained with inverse kinematics. The stability of the gait generated in this paper was verified by a multi-body dynamic analysis using the commercial software $ADAMS^{(R)}$. Additionally the mechanical specifications such as gear reduction ratio, electrical specifications of motor and electrical power consumption during walking have been confirmed by the multi-body dynamic analysis. Finally we constructed a small quadruped robot and confirmed the gait.

Aspect ratios of code-designed steel plate shear walls for improved seismic performance

  • Verma, Abhishek;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.107-121
    • /
    • 2022
  • Past studies have shown that the aspect ratio (width-to-height) of a steel plate shear wall (SPSW) can significantly affect its seismic response. SPSWs with lower aspect ratio (narrow SPSW) may experience low lateral stiffness and flexure dominated drift response. As the height of the frame increases, the narrow SPSWs prove to be uneconomical and demonstrate inferior seismic response than their wider counterparts. Moreover, the thicker web plates required for narrow SPSWs exerts high inward pull on the VBEs. The present study suggests the limiting values of the aspect ratio for an SPSW system by evaluating the seismic collapse performance of 3-, 6- and 9-story SPSW systems using FEMA P695 methodology. For this purpose, nonlinear models are developed. These models are validated with the past quasi-static experimental results. Non-linear static analyses and Incremental dynamic analyses are then carried. The results are then utilized to conservatively suggest the limiting values of aspect ratios for SPSW system. In addition to the conventional-SPSW (Conv-SPSW), the collapse performance of staggered-SPSW (S-SPSW) is also explored. Its performance is compared with the Conv-SPSW and the use of S-SPSW is suggested in the cases where SPSW with lower than recommended aspect ratio is desired.

The study on the Analysis of Useful Daylight Illuminance in rural standard house model - By Dynamic Daylight Simulation Using Weather Data - (농어촌주택 표준설계의 유용조도 분석에 관한 연구 - 기상데이터 기반 동적 자연채광 시뮬레이션을 기반으로 -)

  • Yun, Young Il;Song, Jeong Suk;Lee, Hyo Won
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.47-55
    • /
    • 2011
  • Daylight is highly beneficial for improving the indoor environmental quality and reducing building energy consumption, daylighting applications are scarcely considered, especially during the Rural standard house models design process, because of lack of previous studies on elderly-light environment and complex simulation process. Therefore, daylighting process were performed using ECOTECT, which has various advantage such as easy user interface and simple simulation processes. Moreover, dynamic daylight simulation were performed using whether data. Static simulation are performed to compute static metrics such as daylight factor, whereas dynamic simulation are performed for dynamic metrics such as daylight autonomy and useful daylight illuminance using annual weather data On the basis of daylight autonomy and useful daylight illuminance analysis result, variations in annual daylight performances. A parametric and regression analysis of the window-to-wall ratio and visible transmittance showed that daylight factor, daylight autonomy increased with window-to-wall ratio and visible transmittance. It can be concluded that this new daylight criteria. useful daylight illuminance, will enable architect to obtain better fenestration design.

The Study on the Analysis of Useful Daylight Illuminance in Care Facilities - By Dynamic Daylight Simulation Using Weather Data - (요양시설의 유용조도 분석에 관한 연구 -기상데이터 기반 동적 자연채광 시뮬레이션을 기반으로-)

  • Yun, Youngil;Cho, Juyoung;Lee, Hyowon
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.17 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • Daylight is highly beneficial for improving the indoor environmental quality and reducing building energy consumption, daylighting applications are scarcely considered, especially during the care facility design process, because of lack of previous studies on elderly- light environment and complex simulation process. Therefore, daylighting process were performed using ECOTECT, which has various advantage such as easy user interface and simple simulation processes. Moreover, dynamic daylight simulation were performed using whether data. Static simulation are performed to compute static metrics such as daylight factor, whereas dynamic simulation are performed for dynamic metrics such as daylight autonomy and useful daylight illuminance using annual weather data On the basis of daylight autonomy and useful daylight illuminance analysis result, variations in annual daylight performances. A parametric and regression analysis of the window-to-wall ratio and visible transmittance showed that daylight factor, daylight autonomy increased with window-to-wall ratio and visible transmittance. It can be concluded that this new daylight criteria. useful daylight illuminance, will enable architect to obtain better fenestration design.

Dynamic stability analysis of laminated composite plates in thermal environments

  • Chen, Chun-Sheng;Tsai, Ting-Chiang;Chen, Wei-Ren;Wei, Ching-Long
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.57-79
    • /
    • 2013
  • This paper studies the dynamic instability of laminated composite plates under thermal and arbitrary in-plane periodic loads using first-order shear deformation plate theory. The governing partial differential equations of motion are established by a perturbation technique. Then, the Galerkin method is applied to reduce the partial differential equations to ordinary differential equations. Based on Bolotin's method, the system equations of Mathieu-type are formulated and used to determine dynamic instability regions of laminated plates in the thermal environment. The effects of temperature, layer number, modulus ratio and load parameters on the dynamic instability of laminated plates are investigated. The results reveal that static and dynamic load, layer number, modulus ratio and uniform temperature rise have a significant influence on the thermal dynamic behavior of laminated plates.

Linear Analysis and Non-linear Analysis with Co-Rotational Formulation for a Cantilevered Beam under Static/Dynamic Tip Loads (정적 및 동적 하중을 받는 외팔보 거동에 관한 선형 및 CR 정식화 비선형 예측의 비교)

  • Ko, Jeong-Woo;Bin, Young-Bin;Eun, Won-Jong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.467-475
    • /
    • 2015
  • In this paper, the behaviour of a cantilevered beam was predicted to examine the difference between linear and non-linear static, dynamic analysis for a structure by using CR nonlinear formulation. Then, external transverse static and dynamic loads were applied at the free tip of the beam. Classical theories were used for the present linear analysis and co-rotational dynamic FEM program was used for the present nonlinear analysis. In the static analysis, effects of the load for the beam deflection were observed in both linear and nonlinear analysis. Then, normalized displacement at the tip of the beam was predicted for different frequency ratio and a significant difference was obtained in the vicinity of the resonant frequency. In addition, effects of frequency and time for the beam deflection were investigated to find the frequency delay.

Effect of beam slope on the static aerodynamic response of edge-girder bridge-deck

  • Lee, Hoyeop;Moon, Jiho;Chun, Nakhyun;Lee, Hak-eun
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.157-176
    • /
    • 2017
  • 2-edge box girder bridges have been widely used in civil engineering practice. However, these bridges show weakness in aerodynamic stability. To overcome this weakness, additional attachments, such as fairing and flap, are usually used. These additional attachments can increase the cost and decrease the constructability. Some previous researchers suggested an aerodynamically stabilized 2-edge box girder section, giving a slope to the edge box instead of installing additional attachments. However, their studies are limited to only dynamic stability, even though static aerodynamic coefficients are as important as dynamic stability. In this study, focus was given to the evaluation of static aerodynamic response for a stabilized 2-edge box girder section. For this, the slopes of the edge box were varied from $0^{\circ}$ to $17^{\circ}$ and static coefficients were obtained through a series of wind tunnel tests. The results were then compared with those from computational fluid dynamics (CFD) analysis. From the results, it was found that the drag coefficients generally decreased with the increasing box slope angle, except for the specific box slope range. This range of box slope varied depending on the B/H ratio, and this should be avoided for the practical design of such a bridge, since it results in poor static aerodynamic response.

Analysis of Static and Dynamic Characteristics of Reinforced Roadbed Materials (철도 강화노반재료의 정ㆍ동적 특성 분석)

  • 황선근;신민호;이성혁;이시한;최찬용
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.34-41
    • /
    • 2000
  • The analysis of static and dynamic characteristics of reinforced roadbed materials was performed through model and laboratory tests. The strength characteristic of reinforced roadbed materials such as HMS-25 and soil were investigated through the unconfined axial compression test, the model soil box test and the combined resonant column and torsional shear test. The unconfined axial compression strength of HMS-25 shows a steady increasement in strength due to the chemical hardening reaction between HMS-25 and water. The result of model soil box test reveals that railroad roadbed of HMS-25 is better than that of soil in several aspects, such as, bearing capacity and settlement. The combined resonant column and torsional shear test result indicates that shear modulus of HMS-25 and soil increase with the power of 0.5 to the confining pressure and linear relationship to normalized shear modulus and damping ratio.

  • PDF

Nondestructive Bending Strength Evaluation of Ceramics Made from Miscanthus sinensis var. purpurascens Particle Boards - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Nondestructive evaluation (NDE) method by using a resonance frequency mode was carried out for ceramics made from particle boards with different phenol resin impregnation ratios (30, 40, 50, 60%) at carbonizing temperature of $800^{\circ}C$. The material for ceramics was Miscanthus sinensis var. purpurascens board. Dynamic modulus of elasticity increased with increasing impregnation ratio. There was a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made from Miscanthus sinensis var. purpurascens particle boards by different phenol resin impregnation ratios.

Characteristics of Hysteretic Behavior of Circular Steel Column using SM490 for Loading Rate (재하속도에 따른 SM490강재 원형강기둥의 이력거동 특성)

  • Jang, Gab Chul;Chang, Kyong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.935-941
    • /
    • 2006
  • The hysteretic behavior of steel structure under cyclic and dynami loading such as earthquake is different to that under static loading. Because structural steels on dynamic deformation is different to static deformation with respect with mechanical characteristics and stress-strain relationship. Therefore, to accurately predict the hysteretic behavior of steel structures such as circular steel columns under cyclic and dynamic loading, the difference of loading carrying capacity and deformation according to loading rate, assumed static and dynamic deformation state, must be investigated. In this study, numerical analyses of circular steel column using SM490 for change of loading rate and diameter-thickness ratio(D/t) were carried out by using three-dimensional elastic-plastic finite element analysis and dynamic cyclic plasticity model of SM490 developed by the authors. Characteristics of hysteretic behavior of circular steel column using SM490, load carrying capacity and energy dissipation ratio, were clarified by analysis results.