• 제목/요약/키워드: Dynamic steady-state

검색결과 680건 처리시간 0.026초

변동하중 조건에서 점접촉 탄성유체윤활의 유막거동 연구 (Study of the Film Thickness Behaviors in the Elastohydrodynamic Lubrication of Circular Contact under the Dynamic Loading Condition with Multigrid Multilevel Method)

  • 조재철;장시열
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.367-373
    • /
    • 2009
  • Many research of elastohydrodynamic lubrication (EHL) has been performed under the condition of steady state loading. However, mechanical elements undergo severe high loads that are in the fluctuating modes of frequency and amplitude. Conventional numerical method for the circular contact of EHL study has the difficulty in making the film thickness and pressure of EHL converged in high loads of steady state as well as fluctuating loading conditions. In this work, multigrid multilevel method are used for the stable convergence of film pressure and thickness under the conditions of high as well as varying loads, and very stable solutions of film behaviors with elastic deformation are obtained. Several results of dynamic loading condition are shown and compared with those of steady state condition in the aspects of circular EHL film thickness and pressure.

Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark

  • Shaukat, Nadeem;Ryu, Min;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.920-927
    • /
    • 2017
  • With ever-advancing computer technology, the Monte Carlo (MC) neutron transport calculation is expanding its application area to nuclear reactor transient analysis. Dynamic MC (DMC) neutron tracking for transient analysis requires efficient algorithms for delayed neutron generation, neutron population control, and initial condition modeling. In this paper, a new MC steady-state simulation method based on time-dependent MC neutron tracking is proposed for steady-state initial condition modeling; during this process, prompt neutron sources and delayed neutron precursors for the DMC transient simulation can easily be sampled. The DMC method, including the proposed time-dependent DMC steady-state simulation method, has been implemented in McCARD and applied for two-dimensional core kinetics problems in the time-dependent neutron transport benchmark C5G7-TD. The McCARD DMC calculation results show good agreement with results of a deterministic transport analysis code, nTRACER.

고분자 전해질 연료전지의 외부가습 조건에 따른 정상상태 및 비정상상태 성능특성 연구 (A study on the steady-state and dynamic performance of polymer electrolyte fuel cells under various external humidification conditions)

  • 이용택;김보성;김용찬;최종민;고장면
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3407-3412
    • /
    • 2007
  • The performance characteristics of the polymer electrolyte fuel cells (PEFCs) were investigated under various humidification conditions at steady-state and transient conditions. The PEFC studied in this study was characterized by I-V curves in potentiostatic mode. The I-V curves representing steady-state performance were obtained from OCV to 0.25V, and the dynamic performance responses were obtained at some points of voltages. The anodic external humidification was applied and the humidity was controlled from 20% to 100%. The effects of relative humidity of hydrogen were measured with the dry air at the cathode. At high voltage region, the performance at high temperature was higher, but at low voltage region, low temperature condition showed the higher performance. The dynamic responses were observed at the instant when the voltage of the PEFC was changed. It was observed that the performance reached steady-state earlier with the increase of temperature.

  • PDF

직교 이방성체의 동적 응력확대계수에 관한 연구(I) (A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I))

  • 이광호;황재석;최선호
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.

비관성 좌표계에서의 정상해석을 통한 동 안전 미계수 예측 기법 연구 (A STUDY OF PREDICTION METHOD FOR DYNAMIC STABILITY DERIVATIVE USING STEADY STATE SIMULATION IN NON-INERTIAL COORDINATE)

  • 이형로;이승수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.428-433
    • /
    • 2011
  • In this paper, a prediction method for dynamic stability derivatives is studied using steady state simulations in rotational coordinates. The simulations require the extension of a standard CFD formulations based on inertial coordinate. A new CFD code based on the method are developed. Flows induced by steady circular motions of airfoils with a constant pitch rate are simulated with the code. From the numerical simulations, the pitch rate derivatives are obtained at various Mach numbers, and the results are compared with other numerical results. The numerical simulations show that the new code are capable of predicting dynamic stability derivatives.

  • PDF

소형 재생 가스터빈의 동적 작동특성 해석 (Analysis of the Dynamic Characteristics of a Small Regenerative Gas Turbine)

  • 김재환;전용준;김동섭;노승탁
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.769-777
    • /
    • 1999
  • This paper presents models for the dynamic simulation of a regenerative gas turbine and describes dynamic behaviors of a small regenerative engine. A quasi-steady model is introduced where the inertia of the working fluid is assumed to be negligible compared with the mechanical inertia of the rotating shaft. Based on this quasi-steady model, the transient model for the heat exchanger is employed to simulate the unsteady heat exchange in the recuperator. The effect of the thermal inertia of the recuperator metal on transient behaviors is analyzed by comparing the predicted results of the transient and steady state heat exchanger models. For several load change modes such as sudden increase, decrease and periodic variation, engine dynamic characteristics are investigated by applying a fuel control logic for the constant shaft speed. It is found that the thermal inertia of the recuperator metal has a dominant effect on the whole engine dynamic behavior.

준정상상태 해석을 통한 고정속 풍력 발전기의 FRT에 대한 STATCOM의 효과 분석 (Quasi-Steady-State Analysis on the Effect of the STATCOM on FRT Performance of Fixed Speed Wind Turbines)

  • 안선주;황평익;남순열;강상희;문승일
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.686-692
    • /
    • 2010
  • This paper analyzes the effect of the STATCOM on the improvement of the Fault Ride Through (FRT) capability of the fixed speed wind turbines(FSWTs). The steady-state models of the wind farm components, such as induction generator, capacitor bank, and the STATCOM, are developed based on the simplified equivalent circuit. Especially, the STATCOM is modeled as a controllable current source and a method that analytically determines the magnitude of the injection current is developed. For the quasi-steady-state(QSS) analysis, the steady-state model of the generator and STATCOM are merged with the dynamic model of drive train. The QSS simulation with the STATCOM shows that the STATCOM can enhance the FRT performance by improving the $W_r-T_e$ characteristics of the FSWTs.

연속반응이 일어나는 연속류 교반조 반응기의 제어 (Control of a continuous flow stirred tank reactor with consecutive reactions)

  • 김종엽;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.232-237
    • /
    • 1986
  • Theoretical studies are performed for a nonisothermal CFSTR in which consecutive reactions take place. The local dynamic stability of an unstable steady state is investigated with relation to variations in the controller gain when the temperature is subjected to a proportional control. The control has significant in fluences upon the stability of the high temperature steady state as well as that of the intermediate steady state.

  • PDF

활성슬러지 하수처리장에 유입된 Polycyclic Aromatic Hydrocarbons의 농도분포를 예측하기 위한 수학적 모형의 개발 (A Mathematical Model for Prediction of the Fats of Polycyclic Aromatic Hydrocarbons in Activated Sludge Processes : Steady State and Dynamic Simulation)

  • 고광백;벌소폴맥
    • 대한토목학회논문집
    • /
    • 제10권4호
    • /
    • pp.173-184
    • /
    • 1990
  • 본 연구에서는 활성슬러지 하수처리장에 유입된 PAHs의 일종인 anthracene을 대상으로 이의 농도분포, 물리적 혹은 생물학적 변환을 예측하기 위한 수학적 모형을 제안하였다. 이 수학적 모형은 유입 anthracene의 volatilization, biodegradation 및 adsorption/desorption과 같은 반응을 고려한 5개의 연립미분방정식으로 구성되어 있으며, 이들에는 7개의 kinetic rate constants와 18개의 input variables를 포함하고 있다. Steady state simulation의 결과 유입된 anthracene은 1차 침전지에서의 슬러지 배출로 인하여 약 33%가 포기조에서 발생한 volatilization에 의하여 약 61%가 제거되어, 총괄적인 anthracene의 제거율은 약 97%정도이었다. Dynamic simulation의 결과로 본 연구대상 system의 경우에 system이 steady state에 도달하는 시간은 약 160시간 정도로 예측되었다. 이와 아울러 본 연구에서 제안된 수학적 모형의 활용 가능성이 각종 simulation의 결과로 비교적 구체적으로 규명되었다.

  • PDF

유체유동을 갖는 회전 외팔 파이프의 동특성에 미치는 끝단질량의 영향 (The Influence of Tip-mass on Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid)

  • 윤한익;최창수;손인수
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1824-1830
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe conveying fluid and the tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the rotating angular velocity and the velocity of fluid flow in a cantilever pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by the numerical method. The effects of a tip mass on the dynamic response of a cantilever pipe are also studied. The tip-amplitude and maximum tip-deflection of each direction are directly proportional to the tip mass of the cantilever pipe in steady state. It identifies that the influence of the fluid velocity and the rotating angular velocity of the cantilever pipe give much variation the bending tip-displacement of steady state and the bending tip-displacement of non-steady state, respectively. The influence of the rotating angular velocity gives much the deflection of axial direction.