• Title/Summary/Keyword: Dynamic steady-state

Search Result 680, Processing Time 0.037 seconds

Dynamic Characteristics Analysis of a Rigid Rotor System Supported by Journal Air Bearings (저널 공기 베어링에 의해 지지되어진 강체 로터 계의 동특성 해석)

  • 권대규;곡순이;이성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1026-1031
    • /
    • 2001
  • In this paper. the dynamic characteristics of a super high-speed tilting-pad air bearing(TPGB) used in a turbo expander with high expansion ratio are analyzed. The dynamic behavior and stability of a rotary system supported by two journal air bearings are investigated numerically. The transient response of the shaft is obtained by simultaneously solving the equation of motion of the shaft and the dynamic Reynolds equation. The stiffness and damping coefficients of the bearing are calculated from the loading coefficients of the bearing are calculated from the loading capacity. shaft velocity and displacement by using a curve fitting method. The natural frequencies of the 1st and 2nd rigid modes can be calculated from these coefficients. The theoretical method of a rigid rotor system is verified by experimentsut.

  • PDF

Improved ADALINE Harmonics Extraction Algorithm for Boosting Performance of Photovoltaic Shunt Active Power Filter under Dynamic Operations

  • Mohd Zainuri, Muhammad Ammirrul Atiqi;Radzi, Mohd Amran Mohd;Soh, Azura Che;Mariun, Norman;Rahim, Nasrudin Abd.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1714-1728
    • /
    • 2016
  • This paper presents improved harmonics extraction based on Adaptive Linear Neuron (ADALINE) algorithm for single phase photovoltaic (PV) shunt active power filter (SAPF). The proposed algorithm, named later as Improved ADALINE, contributes to better performance by removing cosine factor and sum of element that are considered as unnecessary features inside the existing algorithm, known as Modified Widrow-Hoff (W-H) ADALINE. A new updating technique, named as Fundamental Active Current, is introduced to replace the role of the weight factor inside the previous updating technique. For evaluation and comparison purposes, both proposed and existing algorithms have been developed. The PV SAPF with both algorithms was simulated in MATLAB-Simulink respectively, with and without operation or connection of PV. For hardware implementation, laboratory prototype has been developed and the proposed algorithm was programmed in TMS320F28335 DSP board. Steady state operation and three critical dynamic operations, which involve change of nonlinear loads, off-on operation between PV and SAPF, and change of irradiances, were carried out for performance evaluation. From the results and analysis, the Improved ADALINE algorithm shows the best performances with low total harmonic distortion, fast response time and high source power reduction. It performs well in both steady state and dynamic operations as compared to the Modified W-H ADALINE algorithm.

A Robust State Feedback Control of Gimbal System with Parametric Uncertainty (불확실성 파라미터를 포함하는 김발시스템의 상태궤환 강인제어기 설계)

  • Jeon, YeongBeom;Choi, WooSeok;Han, JiHoon;Lee, SungWoo;Kang, TaeHa
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.140-147
    • /
    • 2015
  • In this paper, we propose a state feedback robust controller of 2-axis gimbal system which have bounded parametric uncertainty. The proposed controller is robust against dynamics variations of gimbal system and contains a dynamic compensator in order to improve a steady state error and a transient response. The stability of the closed-loop system is proved by Lyapunov approach. The performance of the proposed method is demonstrated by simulation on a 2-axis gimbal system.

A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory

  • Liu, Yan;Li, Xu
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.107-116
    • /
    • 2022
  • The steady state of unsaturated soil takes a long time to achieve. The soil seepage behaviours and hydraulic properties depend highly on the wetting/drying rate. It is observed that the soil-water characteristic curve (SWCC) is dependent on the wetting/drying rate, which is known as the dynamic effect. The dynamic effect apparently influences the scanning curves and will substantially affect the seepage behavior. However, the previous models commonly ignore the dynamic effect and cannot quantitatively describe the hysteresis scanning loops under dynamic conditions. In this study, a dynamic hysteresis model for SWCC is proposed considering the dynamic change of contact angle and the moving of the contact line. The drying contact angle under dynamic condition is smaller than that under static condition, while the wetting contact angle under dynamic condition is larger than that under static condition. The dynamic contact angle is expressed as a function of the saturation rate according to the Laplace equation. The model is given by a differential equation, in which the slope of the scanning curve is related to the slope of the boundary curve by means of contact angle. Empirical models can simulate the boundary curves. Given the two boundary curves, the scanning curve can be well predicted. In this model, only two parameters are introduced to describe the dynamic effect. They can be easily obtained from the experiment, which facilitates the calibration of the model. The proposed model is verified by the experimental data recorded in the literature and is proved to be more convenient and effective.

Control Bandwidth Extension Method Based on Phase Margin Compensation for Inverters with Low Carrier Ratio

  • Wei, Qikang;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1760-1770
    • /
    • 2018
  • This paper presents a control bandwidth extension method for inverters with a low carrier ratio. The bandwidth is extended at the price of decreasing the phase margin. Then the phase margin is compensated by introducing an extra leading angle into an inverse Park transformation. The model of the controller with the proposed method is established. The magnitude and phase characteristics are also analyzed. Then the influence on system stability when the leading angle is introduced is analyzed. The proposed method is applied to design an inverter controller with both a large bandwidth and a desired phase margin, and the experimental results verify that the controller performs well in the steady-state and in terms of transient response.

Nonlinear Effects on the Cable Dynamic Behaviour (케이블의 동적거동에 미치는 비선형 영향)

  • Hyun-Kyoung,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.11-16
    • /
    • 1990
  • The effects on the dynamic behaviour of the geometric nonlinearity and large dynamic tensile forces occurring in hostile sea environments must be investigated for assessing extreme tensions and fatigue life expectancy of cable. In this paper, the combined effects on the cable dynamic responses are shown through comparisons between numerical solutions to the cable dynamic equations with geometric nonlinearity and large tensile force terms as well as nonlinear drag term and those to the cable equations with only nonlinear drag term. It is found that, in steady state, the cambined effects increase the maximum dynamic tension and reduce the magnitude of the minimum of the dynamic tension at the middle of the cable. This decrease together with the increase of the maximum dynamic tension, cause the average tension to become higher and, therefore, it may deteriorate the cable fatigue life.

  • PDF

A Study on Steady-State Performance Analysis and Dynamic Simulation for Medium Scale Civil Aircraft Turbofan Engine (I) (중형항공기용 터보팬엔진의 정상상태 성능해석 및 동적모사에 관한 연구 (I))

  • 공창덕;고광웅;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.47-55
    • /
    • 1998
  • Steady-state and transient performance for the medium scale civil aircraft turbofan engine was analyzed. Steady-state performance was analyzed on maximum take-off condition, maximum climb condition, and cruise condition. At 90%RPM of the low pressure compressor, the partload performance was economized. The transient performance was analyzed with cases of the step increase, the ramp increase, the ramp decrease, and the step increase and ramp decrease for the input fuel flow. For the transient performance analysis, work matching between compressor and turbine was needed. Modified Euler method was used the integration of residual torque in work matching equation. At all flight condition, the overshoot of the high pressure turbine inlet temperature was appeared in the step and ramp increase case, and the surge of high pressure compressor was appeared in the step increase case and the ramp increase case within 5.5 seconds of maximum climb condition.

  • PDF

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF

Analysis of the Effects of CO Poisoning and Air Bleeding on the Performance of a PEM Fuel Cell Stack using First-Order System Model (일차계 모델을 이용한 고분자전해질 연료전지 스택의 CO Poisoning 및 Air Bleeding 효과 분석)

  • Han, In-Su;Shin, Hyun Khil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.370-375
    • /
    • 2013
  • We analyze the effects of CO poisoning and air bleeding on the performance of a PEM (polymer electrolyte membrane) fuel cell stack fabricated using commercial MEA (membrane electrode assembly). Dynamic response data from the experiments on the performance of a stack are identified by obtaining steady-state gains and time-constants of the first-order system model expressed as a first-order differential equation. It is found that the cell voltage of the stack decreases by 1.3-1.6 mV as the CO concentration rises by 1 ppm. The time elapsed to reach a new steady state after a change in the CO concentration is shortened as the magnitude of the change in the CO concentration increases. In general, the steady-state gain becomes bigger and the time-constant gets smaller with increasing the air concentration (air-bleeding level) in the reformate gas to restore the cell voltage. However, it is possible to recover 87%-96% of the original cell voltages, which are measured with free of CO, within 1-30 min by introducing the bleed air as much as 1% of the reformate gas into the stack.

A Five-Phase Induction Motor Speed Control System Excluding Effects of 3rd Current Harmonics Component

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.294-303
    • /
    • 2011
  • In this paper an effective five-phase induction motor (IM) and its drive methods are proposed. Due to the additional degrees of freedom, the five-phase IM drive presents unique characteristics for enhancing the torque producing capability of the motor. Also the five-phase motor drives possess many other advantages when compared to traditional three-phase motor drives. Some of these advantages include, reducing the amplitude and increasing the frequency of the torque pulsation, reducing the amplitude of the current without increasing the voltage per phase and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated winding, the produced back electromotive force (EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus the third harmonic of the currents. For demonstrating the superior performance of the proposed five-phase IM, the motors are also analyzed on the synchronously rotating reference frame. To supply trapezoidal current waveform and to exclude the effect of the $3^{rd}$ harmonic current, a new control stratagem is proposed. The proposed control method is based on direct torque control (DTC) and rotor flux oriented control (RFOC) of the five-phase IM drives. It is able to reduce the acoustical noise, the torque, the flux, the current, and the speed pulsations during the steady state. The DTC transient merits are preserved, while a better quality steady-state performance is produced in the five phase motor drive for a wide speed range. Experimental results clearly demonstrated a more dynamic steady state performance with the proposed control system.