• Title/Summary/Keyword: Dynamic stabilization

Search Result 310, Processing Time 0.021 seconds

Back Muscle Changes after Pedicle Based Dynamic Stabilization

  • Moon, Kyung Yun;Lee, Soo-Eon;Kim, Ki-Jeong;Hyun, Seung-Jae;Kim, Hyun-Jib;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.3
    • /
    • pp.174-179
    • /
    • 2013
  • Objective : Many studies have investigated paraspinal muscle changes after posterior lumbar surgery, including lumbar fusion. However, no study has been performed to investigate back muscle changes after pedicle based dynamic stabilization in patients with degenerative lumbar spinal diseases. In this study, the authors compared back muscle cross sectional area (MCSA) changes after non-fusion pedicle based dynamic stabilization. Methods : Thirty-two consecutive patients who underwent non-fusion pedicle based dynamic stabilization (PDS) at the L4-L5 level between February 2005 and January 2008 were included in this retrospective study. In addition, 11 patients who underwent traditional lumbar fusion (LF) during the same period were enrolled for comparative purposes. Preoperative and postoperative MCSAs of the paraspinal (multifidus+longissimus), psoas, and multifidus muscles were measured using computed tomographic axial sections taken at the L4 lower vertebral body level, which best visualize the paraspinal and psoas muscles. Measurements were made preoperatively and at more than 6 months after surgery. Results : Overall, back muscles showed decreases in MCSAs in the PDS and LF groups, and the multifidus was most affected in both groups, but more so in the LF group. The PDS group showed better back muscle preservation than the LF group for all measured muscles. The multifidus MCSA was significantly more preserved when the PDS-paraspinal-Wiltse approach was used. Conclusion : Pedicle based dynamic stabilization shows better preservation of paraspinal muscles than posterior lumbar fusion. Furthermore, the minimally invasive paraspinal Wiltse approach was found to preserve multifidus muscles better than the conventional posterior midline approach in PDS group.

The Effects of 3-Dimensional Lumbar Stabilization Exercise have an effect on the improvement of pain and static or dynamic balance ability in 20's age group with Low Back Pain (3차원 요부안정화 운동이 20대 요통환자의 통증과 동적 및 정적 균형능력 향상에 미치는 효과)

  • Kim, Gyu-Yong;Ahn, Chang-Sik;Kim, Seong-Su
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.2
    • /
    • pp.235-246
    • /
    • 2011
  • Purpose: The aim of this study is to compare and assess the effects of lumbar stabilization exercise on the balance ability of young college studets with low back pain after having performed spinal stabilization exercise by using 3-dimensional air-balance system and gym ball. Methods: The subjects of this study were 34 low back patients in their early twenties. They were divided into two groups: 3-dimensional lumbar stabilization exercise group(N=17) and gym ball lumbar stabilization exercise group(N=17). The period of the intervention was for five weeks. VAS(Visual Analogue Scale) for pain test, ODI(Oswestry Disability Index) for ADL limitation test, Tetrax system for static balance test, and Air-balance system 3D for dynamic balance test were used as evaluation tools for this study. Results: Pain showed significant decrease in both groups after having performed the experiment, but ADL limitation of the groups did not show any remarkable difference between before and after the experiment. Dynamic balance ability in the 8-directional angle comparison test significantly increased in all directions except for the backward, left-backward, and right-backward directions. As for dynamic balance ability in the 8-directional postural test, 3D exercise group showed statistically significant reduction in every direction while gym ball exercise group did not(p<.05). However, when it comes to static balance ability in the weight distribution and stability test, there was not significantly change between pre and post test in both groups. Conclusion: This study shows 3-dimensional lumbar stabilization exercise is more effective in the lumbar stabilization of coordinated movement than gym ball exercise, which may imply that 3D air-balance system can be used for the therapeutic treatment of body imbalance for patients with low back pain.

The effect of trunk stabilization exercise according to face-to-face, non-face-to-face, and self-exercise on balance ability (대면, 비대면, 자가운동에 따른 체간안정화 운동이 균형능력에 미치는 영향)

  • Kyung-eun Lee;So-eun Kim;Hyun-jeong Kim;Jeongwoo Jeon;Jiheon Hong;Jaeho Yu;Jinseop Kim;Seong-Gil Kim;Yeongyo Nam;Dongyeop Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • Study of the effect of interbody stabilization exercises on the static and dynamic balance of face-to-face, non-face-to-face, and self-group. We recruited healthy young adults The subjects were randomly divided into three groups to perform inter-body stabilization exercises, and static and dynamic balance were measured, respectively, before and after intervention. In the Face to Face Group, dynamic balance significantly increased in the anterior and posteriomedial directions before and after intervention. There was also a significant increase in static balance. In the Non face to face Group, there was a significant increase in the three directions of dynamic and static balance. The self-exercise group significantly increased in three directions of dynamic balance, but there was no significant difference in static balance. No significant differences between groups were found in any variables. The results of this study showed that interbody stabilization exercises are effective in improving static and dynamic balance. In the face-to-face group, the inter-body stabilization exercise was effective in improving dynamic balance and static balance, and in the non-face-to-face group, the inter-body stabilization exercise was effective in improving dynamic balance and static balance. In the self-contained group, it was effective in improving dynamic balance.

The Effect of Dynamic Neuromuscular Stabilization (DNS) on the Respiratory Function of Subjects with Forward Head Posture (FHP)

  • Bae, Won-Sik
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.55-64
    • /
    • 2021
  • PURPOSE: The purpose of this study was to apply dynamic neuromuscular stabilization (DNS) to subjects with forward head posture (FHP) and to compare its effects on respiratory function as against the conventional neck stabilization exercise and neck stretching and extensor strengthening exercises. METHODS: The whole-body posture measurement system was used to measure the degree of FHP, and a spirometer and a respiratory gas analyzer were used to measure the respiratory function. After the intervention was completed, the changes over time were analyzed in the DNS group, the neck stabilization exercise group, and the neck stretching and extensor strengthening exercise group. The inter-group difference in the changes was also analyzed. A repeated ANOVA was performed to compare the respiratory function according to the period between the three groups, and the least significant difference (LSD) method was used for the post hoc test. RESULTS: After the 6-week exercise period, respiratory functions, such as forced vital capacity (FVC), forced expiratory volume for 1 second (FEV1), forced expiratory volume for 1 sec/forced vital capacity (FEV1/FVC), maximum oxygen intake (VO2max), and the volume of expired gas (VE), significantly improved according to the period (p < .05), but no inter-group differences were found. CONCLUSION: DNS is an effective training method, and can be applied along with neck stabilization exercise and neck stretching and extensor strengthening exercises, which are widely used in clinical practice, to people with FHP who cannot directly perform neck exercises to improve their respiratory function.

Stabilization of elevation for gunner primary sight using variable structure control (가변구조제어에 의한 조준경 고각 안정화)

  • 김중완;이정규;김주상;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.643-647
    • /
    • 1990
  • Gunner primary sight(GPS) stabilization system lays line of sight(LOS) to find out a target and transmits informations to the fire control system (FCS). In a moving vehicle, accuracy of LOS and FCS depends on the design of GPS and servomechanism system. The heavy vibration of vehicle on the severe off-road environment degenerates the stabilization capability of GPS. In this study, to stabilize of elevation for GPS using the variable structure control, we derived the dynamic equation of GPS system and designed the variable structure controller. Computer simulation results fulfilled the static and dynamic stability of GPS using the variable structure control.

  • PDF

Analysis and Evaluation for Constraint Enforcement System (제한 시스템의 분석 및 평가)

  • Hong, Min;Park, Doo-Soon;Choi, Yoo-Joo
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.57-64
    • /
    • 2009
  • Stable and effective constraint enforcement system is one of the crucial components for physically-based dynamic simulations. This paper presents analysis and evaluation for traditional constraint enforcement systems(Lagrange Multiplier method, Baumgarte stabilization method, Post-stabilization method, Implicit constraint enforcement method, Fast projection method) to provide a guideline to users who need to integrate a suitable constraint enforcement system into their dynamic simulations. The mathematical formulations for traditional constraint enforcement systems are presented in this paper. This paper describes a summary of evaluation which consists of constraint error comparison, computational cost, and dynamic behavior analysis to verify the efficiency of each traditional constraint enforcement system.

A Study on the Effect of Trunk Stabilization Program on Body Balance, Lung Capacity, Muscular Activity of Healthy Adults (체간 안정화운동이 정상성인의 균형, 폐활량, 근활성도에 미치는 영향)

  • Nam, Hyoungchun;Jo, Yoonjin;Kang, Byeongjoo;Kim, Seulbi;An, Wookjoo;Lee, Hwajoo;Jeong, Sujin
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.4
    • /
    • pp.43-51
    • /
    • 2015
  • Purpose : This study examines the effect of trunk stabilization program on the body balance, lung capacity, and muscular activity of the rectus abdominis and external oblique of healthy adults. Method : A survey was conducted for 20 students of K University located in the city of Y in Gyeongsangbuk-do Province of Korea. The trunk stabilization program consisted of a hollowing exercise, curl-up, bridging exercise, and birddog exercise. This was performed 14 times in total (7 times a week for two weeks). For analysis, good balance was used to measure both static and dynamic balancing ability. A peak flow meter was used to measure the maximum expiratory flow, and MP150 was used to measure muscular activity of the rectus abdominis and external oblique. Result : After the trunk stabilization program, the participants showed a difference in score and time taken to achieve static and dynamic balance, and muscular activity of the rectus abdominis and external oblique at a statistically significant level (p<0.05). However, no significant difference was observed in the left-to-right distance and front-to-back distance in a dynamic balance, and the lung capacity (p>0.05). Conclusion : The results showed that the trunk stabilization program was effective in enhancing both static and dynamic balancing ability and muscular activity. It also increased the lung capacity although the change was not at a statistically significant level.

Effect of Gaze Stabilization Exercise with Balance Exercise on Static and Dynamic Balance Function of Healthy Young A dults: A Randomized Controlled Trial

  • Yi Wu;Xing- HAN Zhou;Yongbum Jung;Myoung-Kwon Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.19 no.2
    • /
    • pp.1-16
    • /
    • 2024
  • PURPOSE: This study examined the effects of four weeks of gaze stabilization exercises and balance training on the static and dynamic balance functions. METHODS: The study was an assessor-blinded randomized controlled trial conducted at Daegu University in South Korea. Thirty subjects who fulfilled the inclusion criteria were selected and divided randomly into three groups containing ten each. The first group received balance exercises with gaze stabilizing exercises (BGG). The second group received a balance exercise (BEG), and the third group received gaze-stabilizing exercise (GEG). Each group exercised for 40 minutes, three times a week for four weeks. The subjects were asked to complete the following static balance test: 1) one-leg standing test, 2) sharpened Romberg test, dynamic balance test, 3) Y-balance test, and 4) single-leg stand-squat-stand test. The static and dynamic balance were measured before and after four weeks to determine the effect of exercise on balance. RESULTS: The static (OLS and SRT) and dynamic (YBT and SST) balance tests showed significant differences in the surface and length of the three groups (p < .05), and the y-balance score effect size, 11.477 (p < .05), was improved significantly. On the other hand, the change in BGG value was larger than those of BEG and GEG, and the improvements in balance control were the most significant. CONCLUSION: After four weeks of exercise, BGG showed the best improvement in static and dynamic balance, suggesting that this specific type of gaze stabilization exercise with balance exercise may benefit healthy young adults.

Robust D-Stability and D-Stabilization of Dynamic Interval Systems

  • Mao, Wei-Jie;Chu, Jian
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • A sufficient condition for the robust D-stability of dynamic interval systems is proposed in this paper. This D-stability condition is based on a parameter-dependent Lyapunov function obtained from the feasibility of a set of matrix inequalities defined at a series of partial-vertex-based interval matrices other than the total vertex matrices as previous results. This condition is also extended to the robust D-stabilization problem of dynamic interval systems, which supplies an effective synthesis procedure for any LMI D-region. The proposed conditions can be simplified to a set of LMIs, which can be solved by efficient interior point methods in polynomial time.