• Title/Summary/Keyword: Dynamic space

Search Result 2,330, Processing Time 0.03 seconds

Structural Dynamic Characteristics of Modular Deployable Reflectors and Booms for the Large Mesh Antennas (대형 메쉬 안테나 개발을 위한 모듈식 반사판 및 붐 구조의 동적 특성 분석)

  • Roh, Jin-Ho;Jung, Hwa-Young;Kang, Deok-Soo;Kim, Ki-Seung;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.691-699
    • /
    • 2022
  • Large aperture antennas with long focal lengths in space have important application for telecommunications, Earth observation and science missions. This paper aims to understand the dynamics of deployment of large mesh antennas and to provide a multibody model for determining the driving forces for the design of reflectors and booms. The modular deployable reflector and boom are designed based on the deployment unit cell. A multibody dynamic model is formulated with Kane's equation and simulated using the pseudo upper triangular decomposition (PUTD) method for solving the constrained problem. Based on the multibody dynamic model, the kinetics of the deployment, the motor driving forces, and the structural dynamic deformation are investigated.

A Study on Meaning of the Water and Water space in western (서구건축공간에서 물과 수공간의 의미에 관한 연구)

  • 이영호;김행신
    • Journal of the Korean housing association
    • /
    • v.13 no.3
    • /
    • pp.11-20
    • /
    • 2002
  • The purpose of this study is to find out the meanings of water and water spaces in the Western architecture. The meaning of water is investigated by means of mythology and literature studies. It is found that water has ambivalent meanings, i.e. life and death, creation and destruction, chastity and sensuality. The meanings of water spaces in the Western architecture are dramatic, secret and dynamic, and represent publicity, verticality, formality in addition to desire for authority and realization(embodiment) of paradise. Water space is an essential component of beautiful and dynamic spaces and is used to revitalize dreary spaces.

THE CRYOGENIC REGULATOR DESIGN FOR LIQUID PROPULSION SYSTEM

  • Kil Gyoung-sub;Lee Joong-Youp;Na Han-Bee;Kim Byung-Hun;Chung Young-Gaph
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.227-230
    • /
    • 2004
  • The regulator that was designed for space use must be operating on the severe circumstance. For example, operating temperature is below 90K and operating pressure is 20.7 MPa. The design of regulator for liquid propulsion system was accomplished and dynamic characteristic was analyzed successfully.

  • PDF

Vibratory loads and response prediction for a high-speed flight vehicle during launch events

  • Kim, Jinhyeong;Park, Seoryong;Eun, Wonjong;Shin, Sangjoon;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.551-564
    • /
    • 2016
  • High-speed flight vehicles (HSFVs) such as space launch vehicles and missiles undergo severe dynamic loads which are generated during the launch and in in-flight environments. A typical vehicle is composed of thin plate skin structures with high-performance electronic units sensitive to such vibratory loads. Such lightweight structures are then exposed to external dynamic loads which consist of random vibration, shock, and acoustic loads created under the operating environment. Three types of dynamic loads (acoustic loads, rocket motor self-induced excitation loads and aerodynamic fluctuating pressure loads) are considered as major components in this study. The estimation results are compared to the design specification (MIL-STD-810) to check the appropriateness. The objective of this paper is to study an estimation methodology which helps to establish design specification for the dynamic loads acting on both vehicle and electronic units at arbitrary locations inside the vehicle.

A Dynamic Price Formation System and Its Welfare Analysis in Quantity Space: An Application to Korean Fish Markets

  • Park, Hoan-Jae
    • The Journal of Fisheries Business Administration
    • /
    • v.41 no.2
    • /
    • pp.107-133
    • /
    • 2010
  • As policy makers are often concerned about dynamic effects of demand behavior and its welfare analysis by quantity changes, the paper shows how dynamic price formation systems can be built up to analyze the effect of policy options to the markets dynamically. The paper develops dynamic model of price formation for fish from the intertemporal optimization of the consumer choice problem. While the resulting model has a similar form of the error correction types of dynamic price formation system, it provides the rational demand behavior contrary to the myopic behavior of error correction demand models. The paper also develops appropriate tools of dynamic welfare analysis in quantity space using only short-run demand estimates both theoretically and empirically as a first attempt in the literature of price formation and fisheries. The empirical results of Korean fish markets show that the dynamic model and the welfare measures are reasonably plausible. The methodology and theory of this research can be applied and extended to the commodity aggregation, dynamic demand estimation, and dynamic welfare effects of regulation in the similar framework. Thus, it is hoped that this will enhance its applications to the demand-side economics.

A Study on Spatial Characteristics by Nietzsche's Dionysian Outlook on Nature (니체의 디오니소스적 자연관에 의한 공간 특성 연구)

  • Kim, Eun-Hee;Lee, Chan
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.3
    • /
    • pp.89-97
    • /
    • 2011
  • An interest in modern space is expanded to search for the relationship among human, space and environment, not limited the fixed or typical material place. For grasping and analyzing the characteristics and aims of modern space, this study is focusing on 'Dionysian outlook on nature' among the Nietzsche's philosophies. Nietzsche's 'Dionysian outlook on nature' based on his 'philosophy of creation and positiveness' has great implications for modern space because it focuses on not only circulation of existence and creation but also dynamic vitality the mostly. The reason is that modern space is required by the tendency changing the goal and aesthetic value by planner or user, not fixed and unchangeable any longer. The concept of space in modern construction is developed by forming various paradigms. Especially, various examples based on Nietzsche's Dionysian outlook on nature, philosophy of creation and positiveness, will be analyzed and possibility of new spatial concept's extension will be researched.

An Image Segmentation Algorithm using the Shape Space Model (모양공간 모델을 이용한 영상분할 알고리즘)

  • 김대희;안충현;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.41-50
    • /
    • 2004
  • Since the MPEG-4 visual standard enables content-based functionalities, it is necessary to extract video objects from video sequences. Segmentation algorithms can largely be classified into two different categories: automatic segmentation and user-assisted segmentation. In this paper, we propose a new user-assisted image segmentation method based on the active contour. If we define a shape space as a set of all possible variations from the initial curve and we assume that the shape space is linear, it can be decomposed into the column space and the left null space of the shape matrix. In the proposed method, the shape space vector in the column space describes changes from the initial curve to the imaginary feature curve, and a dynamic graph search algorithm describes the detailed shape of the object in the left null space. Since we employ the shape matrix and the SUSAN operator to outline object boundaries, the proposed algorithm can ignore unwanted feature points generated by low-level image processing operations and is, therefore, applicable to images of complex background. We can also compensate for limitations of the shape matrix with a dynamic graph search algorithm.

Calibration of ShadowCam

  • David Carl Humm;Mallory Janet Kinczyk;Scott Michael Brylow;Robert Vernon Wagner;Emerson Jacob Speyerer;Nicholas Michael Estes;Prasun Mahanti;Aaron Kyle Boyd;Mark Southwick Robinson
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.173-197
    • /
    • 2023
  • ShadowCam is a high-sensitivity, high-resolution imager provided by NASA for the Danuri (KPLO) lunar mission. ShadowCam calibration shows that it is well suited for its purpose, to image permanently shadowed regions (PSRs) that occur near the lunar poles. It is 205 times as sensitive as the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC). The signal to noise ratio (SNR) is greater than 100 over a large part of the dynamic range, and the top of the dynamic range is high enough to accommodate most brighter PSR pixels. The optical performance is good enough to take full advantage of the 1.7 meter/pixel image scale, and calibrated images have uniform response. We describe some instrument artifacts that are amenable to future corrections, making it possible to improve performance further. Stray light control is very challenging for this mission. In many cases, ShadowCam can image shadowed areas with directly illuminated terrain in or near the field of view (FOV). We include thorough qualitative descriptions of circumstances under which lunar brightness levels far higher than the top of the dynamic range cause detector or stray light artifacts and the size and extent of the artifact signal under those circumstances.

Compromise Optimal Design using Control-based Analysis of Hypersonic Vehicles

  • Liu, Yanbin;bing, Hua
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.137-147
    • /
    • 2015
  • Hypersonic vehicles exhibit distinct dynamic and static characteristics, such as unstable dynamics, strict altitude angle limitation, large control bandwidth, and unconventional system sensitivity. In this study, compromise relations between the dynamic features and static performances for hypersonic vehicles are investigated. A compromise optimal design for hypersonic vehicles is discussed. A parametric model for analyzing the dynamic and static characteristics is established, and then the optimal performance indices are provided according to the different design goals. A compromise optimization method to balance the dynamic and static characteristics is also discussed. The feasibility of this method for hypersonic vehicles is demonstrated.

Effect of Dynamic SGS Model in a Kerosene-LOx Swirl Injector under Supercritical Condition

  • Heo, Jun-Young;Hong, Ji-Seok;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.254-263
    • /
    • 2015
  • In this study, numerical simulations are carried out to investigate the dynamic SGS model effects in a Kerosene-LOx coaxial swirl injector under high pressure conditions. The turbulent model is based on large-eddy simulation (LES) with real-fluid transport and thermodynamics. To assess the effect of the dynamic subgrid-scale (SGS) model, the dynamic SGS model is compared with that of the algebraic SGS model. In a swirl injector under supercritical pressure, the characteristics of temporal pressure fluctuation and power spectral density (PSD) present comparable discrepancies dependant on the SGS models, which affect the mixing characteristics. Mixing efficiency and the probability density (PDF) function are conducted for a statistical description of the turbulent flow fields according to the SGS models. The back-scattering of turbulent kinetic energy is estimated in terms of the film thickness of the swirl injector.