• Title/Summary/Keyword: Dynamic simulation model

Search Result 2,977, Processing Time 0.029 seconds

New Strategy for Eliminating Zero-sequence Circulating Current between Parallel Operating Three-level NPC Voltage Source Inverters

  • Li, Kai;Dong, Zhenhua;Wang, Xiaodong;Peng, Chao;Deng, Fujin;Guerrero, Josep;Vasquez, Juan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.70-80
    • /
    • 2018
  • A novel strategy based on a zero common mode voltage pulse-width modulation (ZCMV-PWM) technique and zero-sequence circulating current (ZSCC) feedback control is proposed in this study to eliminate ZSCCs between three-level neutral point clamped (NPC) voltage source inverters, with common AC and DC buses, that are operating in parallel. First, an equivalent model of ZSCC in a three-phase three-level NPC inverter paralleled system is developed. Second, on the basis of the analysis of the excitation source of ZSCCs, i.e., the difference in common mode voltages (CMVs) between paralleled inverters, the ZCMV-PWM method is presented to reduce CMVs, and a simple electric circuit is adopted to control ZSCCs and neutral point potential. Finally, simulation and experiment are conducted to illustrate effectiveness of the proposed strategy. Results show that ZSCCs between paralleled inverters can be eliminated effectively under steady and dynamic states. Moreover, the proposed strategy exhibits the advantage of not requiring carrier synchronization. It can be utilized in inverters with different types of filter.

Dynamic response and waterproof property of tunnel segmental lining subjected to earthquake action

  • Yan, Qixiang;Bao, Rui;Chen, Hang;Li, Binjia;Chen, Wenyu;Dai, Yongwen;Zhou, Hongyuan
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.411-424
    • /
    • 2019
  • In this study, a numerical model of a shield tunnel with an assembled segmental lining was built. The seismic response of the segmental lining of the section of the shield tunnel in Line 1 of the Chengdu Metro is analyzed as it passes through the interface of sand-cobble and mudstone layers. To do so, the node-stress seismic-motion input method was used to input the seismic motion measured during the 2008 Wenchuan earthquake, and the joint openings and dislocations associated with the earthquake action were obtained. With reference to the Ethylene-Propylene-Diene Monomer (EPDM) sealing gaskets used in the shield tunnels in the Chengdu Metro, numerical simulation was applied to analyze the contact pressure along the seepage paths and the waterproof property under different joint openings and dislocations. A laboratory test on the elastic sealing gasket was also conducted to study its waterproof property. The test results accord well with the numerical results and the occurrence of water seepage in the section of the shield tunnel in Line 1 of the Chengdu Metro during the 2008 Wenchuan earthquake was verified. These research results demonstrate the deformation of segmental joint under earthquake, also demonstrate the relationship between segmental joint deformation and waterproof property.

Blast Analysis and Damage Evaluation for Reinforced Concrete Building Structures (RC Building 구조물의 폭발해석 및 손상평가)

  • Park, Yang Heum;Yun, Sung-Hwan;Jang, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.331-340
    • /
    • 2021
  • The blast damage behavior of reinforced concrete (RC) structures exposed to unexpected extreme loading was investigated. To enhance the accuracy of numerical simulation for blast loading on RC structures with seven blast points, the calculation of blast loads using the Euler-flux-corrected-transport method, the proposed Euler-Lagrange coupling method for fluid-structure interaction, and the concrete dynamic damage constitutive model including the strain rate-dependent strength and failure models was implemented in the ANSYS-AUTODYN solver. In the analysis results, in the case of 20 kg TNT, only the slab member at three blast points showed moderate and light damage. In the case of 100 kg TNT, the slab and girder members at three blast points showed moderate damage, while the slab member at two blast points showed severe damage.

Spatial Characteristics and Driving Forces of Cultivated Land Changes by Coupling Spatial Autocorrelation Model and Spatial-temporal Big Data

  • Hua, Wang;Yuxin, Zhu;Mengyu, Wang;Jiqiang, Niu;Xueye, Chen;Yang, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.767-785
    • /
    • 2021
  • With the rapid development of information technology, it is now possible to analyze the spatial patterns of cultivated land and its evolution by combining GIS, geostatistical analysis models and spatiotemporal big data for the dynamic monitoring and management of cultivated land resources. The spatial pattern of cultivated land and its evolutionary patterns in Luoyang City, China from 2009 to 2019 were analyzed using spatial autocorrelation and spatial autoregressive models on the basis of GIS technology. It was found that: (1) the area of cultivated land in Luoyang decreased then increased between 2009 and 2019, with an overall increase of 0.43% in 2019 compared to 2009, with cultivated land being dominant in the overall landscape of Luoyang; (2) cultivated land holdings in Luoyang are highly spatially autocorrelated, with the 'high-high'-type area being concentrated in the border area directly north and northeast of Luoyang, while the 'low-low'-type area is concentrated in the south and in the municipal area of Luoyang, and being heavily influenced by topography and urbanization. The expansion determined during the study period mainly took place in the Luoyang City, with most of it being transferred from the 'high-low'-type area; (3) elevation, slope and industrial output values from analysis of the bivariate spatial autocorrelation and spatial autoregressive models of the drivers all had significant effects on the amount of cultivated land holdings, with elevation having a positive effect, and slope and industrial output having a negative effect.

Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation

  • Chaabane, Lynda Amel;Bourada, Fouad;Sekkal, Mohamed;Zerouati, Sara;Zaoui, Fatima Zohra;Tounsi, Abdeldjebbar;Derras, Abdelhak;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.185-196
    • /
    • 2019
  • In this investigation, study of the static and dynamic behaviors of functionally graded beams (FGB) is presented using a hyperbolic shear deformation theory (HySDT). The simply supported FG-beam is resting on the elastic foundation (Winkler-Pasternak types). The properties of the FG-beam vary according to exponential (E-FGB) and power-law (P-FGB) distributions. The governing equations are determined via Hamilton's principle and solved by using Navier's method. To show the accuracy of this model (HySDT), the current results are compared with those available in the literature. Also, various numerical results are discussed to show the influence of the variation of the volume fraction of the materials, the power index, the slenderness ratio and the effect of Winkler spring constant on the fundamental frequency, center deflection, normal and shear stress of FG-beam.

Free Radical Polymerization Algorithm for a Thermoplastic Polymer Matrix : A Molecular Dynamics Study (무정형 열가소성 고분자의 자유 라디칼 중합 분자동역학 시뮬레이션 알고리즘)

  • Jung, Ji-Won;Park, Chan-Wook;Yun, Gun-Jin
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.163-169
    • /
    • 2019
  • In this paper, we constructed a molecular dynamics (MD) polymer model of PMMA with 95% of conversion by using dynamic polymerization algorithm of a thermoplastic polymer based on free radical polymerization. In this algorithm, we introduced a united-atom level coarse-grained force field that combines the non-bonded terms from the TraPPE-UA force field and the bonded terms from the PCFF force field to alleviate the computation efforts. The molecular weight distribution and the average molecular weight of the polymer were calculated by investigating each chain generated from the free radical polymerization simulation. The molecular weight of the polymer was controlled by the number of initiator radicals presented in the initial state and molecular weight effect to the density, the glass transition temperature, and the mechanical properties were studied.

A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation

  • Boukhlif, Zoulikha;Bouremana, Mohammed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Bourada, Mohamed;Tounsi, Abdelouahed;Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.503-516
    • /
    • 2019
  • This work presents a dynamic investigation of functionally graded (FG) plates resting on elastic foundation using a simple quasi-3D higher shear deformation theory (quasi-3D HSDT) in which the stretching effect is considered. The culmination of this theory is that in addition to taking into account the effect of thickness extension (${\varepsilon}_z{\neq}0$), the kinematic is defined with only 4 unknowns, which is even lower than the first order shear deformation theory (FSDT). The elastic foundation is included in the formulation using the Pasternak mathematical model. The governing equations are deduced through the Hamilton's principle. These equations are then solved via closed-type solutions of the Navier type. The fundamental frequencies are predicted by solving the eigenvalue problem. The degree of accuracy of present solutions can be shown by comparing it to the 3D solution and other closed-form solutions available in the literature.

Numerical study on Reynolds number effects on the aerodynamic characteristics of a twin-box girder

  • Laima, Shujin;Wu, Buchen;Jiang, Chao;Chen, Wenli;Li, Hui
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.285-298
    • /
    • 2019
  • For super long-span bridges, the aerodynamic forces induced by the flow passing the box girder should be considered carefully. And the Reynolds number sensitively of aerodynamic characteristics is one of considerable issue. In the study, a numerical study on the Reynolds number sensitivity of aerodynamic characteristic (flow pattern, pressure distribution and aerodynamic forces) of a twin-box girder were carried out using large eddy simulation (LES) with the dynamic Smagorinsky-Lilly subgrid model. The results show that the aerodynamic characteristics have strong correlation with the Reynolds number. At the leading edge, the flow experiences attachment, departure, and reattachment stages accompanying by the laminar transition into turbulence, causing pressure plateaus to form on the surface, and the pressure plateaus gradually shrinks. Around the gap, attributing that the flow experiences stages of laminar cavity flow, the wake with alternate shedding vortices, and turbulent cavity flow in sequence with an increase in the Reynolds number, the pressures around the gap vary greatly with the Reynold number. At the trailing edge, the pressure gradually recovers as the flow transits to turbulence (the flow undergoes wake instability, shear layer transition-reattachment station), In addition, at relative high Reynolds numbers, the drag force almost does not change, however, the lift force coefficient gradually decreases with an increase in Reynolds number.

Nonlinear Optimization Analysis of the Carryover Policy in the 2nd Compliance Period of the Korean Emissions Trading Scheme (배출권거래제 2차 계획기간 중 이월한도 정책에 대한 비선형최적화 분석)

  • Jongmin Yu;Seojin Lee
    • Environmental and Resource Economics Review
    • /
    • v.32 no.3
    • /
    • pp.149-166
    • /
    • 2023
  • The emissions trading system, introduced to reduce greenhouse gas emissions, experienced a sharp increase in emission allowance prices during the second plan period (2018-2020), which led to an increase in the demand for smooth supply and demand of emission allowances, while suppliers anticipating a shortage of emission allowances in the future did not participate in trading. Therefore, the authority temporarily revised the guidelines to ensure that the amount of allowances carried forward is proportional to the trading volume as a market stabilization measure. Through an optimization process using a dynamic nonlinear mathematical model, this paper analyzes the impact of the government's intervention on the carryover policy on GHG emission reductions and emission allowance market prices. According to the simulation analysis results, banking regulations could cause a decline in prices during the regulation period, even though the initial policy was predicted to be adopted.

Linear Model Predictive Control of an Entrained-flow Gasifier for an IGCC Power Plant (석탄 가스화 복합 발전 플랜트의 분류층 가스화기 제어를 위한 선형 모델 예측 제어 기법)

  • Lee, Hyojin;Lee, Jay H.
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.592-602
    • /
    • 2014
  • In the Integrated Gasification Combined Cycle (IGCC), the stability of the gasifier has strong influences on the rest of the plant as it supplies the feed to the rest of the power generation system. In order to ensure a safe and stable operation of the entrained-flow gasifier and for protection of the gasifier wall from the high internal temperature, the solid slag layer thickness should be regulated tightly but its control is hampered by the lack of on-line measurement for it. In this study, a previously published dynamic simulation model of a Shell-type gasifier is reproduced and two different linear model predictive control strategies are simulated and compared for multivariable control of the entrained-flow gasifier. The first approach is to control a measured secondary variable as a surrogate to the unmeasured slag thickness. The control results of this approach depended strongly on the unmeasured disturbance type. In other words, the slag thickness could not be controlled tightly for a certain type of unmeasured disturbance. The second approach is to estimate the unmeasured slag thickness through the Kalman filter and to use the estimate to predict and control the slag thickness directly. Using the second approach, the slag thickness could be controlled well regardless of the type of unmeasured disturbances.