• Title/Summary/Keyword: Dynamic rolling analysis

Search Result 132, Processing Time 0.024 seconds

A Study on the Vibration Performance Improvement of Push-pull Power Motor Coaches (전후동력 새마을호 철도차량의 진동성능 개선에 관한 연구)

  • 홍용기;함영삼;박찬경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.343-353
    • /
    • 1997
  • This study had been performed to estimate for vibration characteristics of the Power Motor Coaches with Diesel-Hydraulic Drive and to secure a dynamic characteristic construction technology of another rolling stock. Air bags, springs and dampers of Bogie are carefully reviewed in order to improve ride quality. Dynamic analysis had been performed using VAMPIRE program, which had been developed by BRR, and the analysis results had been compared with test data to verify.

  • PDF

Fatigue Analysis of Reduction Gears Unit in Rolling Stock Considering Operating Characteristics (운행특성을 고려한 철도차량 감속기의 피로해석)

  • Kim, Chul-Su;Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1085-1090
    • /
    • 2011
  • To assure the safety of rolling stock, it is important to perform the fatigue analysis of reduction gear unit in rolling stock considering a variation of velocity and traction motor capability. This paper presents fatigue analysis of the damage of reduction gear unit of railway vehicle under variable amplitude loading(VAL) based on quasi-static fatigue analysis using finite element model and linear Miner's rule. The VAL for the simulation was constructed from the tractive effort curve and train run curves of railway vehicle under commercial operation condition using MSC.ADAMS dynamic analysis. The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the middle gear based on strain-life based approach. The results showed that the frequent high starting torque due to a quick start as well as increasing numbers of stops at station would decrease the fatigue life of reduction gear unit.

Analysis and Evaluation of Reduction of Impact Force in a Coupler when a Long Freight Car Brakes (장대화물열차 제동 시 연결기에 발생하는 충격력 해석 및 분석)

  • Lee, Jeong Jun;Koo, Jeong Seo;Cho, Byung Jin;Na, Hee Seung;Mun, Hyung Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.130-137
    • /
    • 2018
  • In long freight trains, there is a brake time delay in the neighboring freight cars that causes damage and fractures of couplers, especially the knuckle of them. If there is a problem for couplers in the cars, this could cause a derailment and lead to damage of human life and property damage. In this study, maximum forces on the couplers are studied when a long freight car brakes, with brake delay time and coupler gap. We have made a dynamic model of 50 freight cars and couplers, applying contact between couplers and a characteristic curve for expressing force and displacement of buffers with SIMPACK, a multi-body dynamics program. We use EN 14531-2 from the British Standards Institution, a standard of freight car brakes for the verification of the dynamic model. We also use a simplified method to analyze the dynamic model of 50 freight cars. With changing coupler gap and brake delay time, we do comparative analysis with AAR M-201 from the Association of American Railroads, a standard of AAR couplers. From this result, we find that the standard on fatigue limit is satisfied, such that the brake delay time is within 0.06 second if the coupler gap of the AAR coupler is within 20 millimeters.

The Study of harmonic peaks removal for modal analysis of Rolling tire (Rolling Tire 모드해석을 위한 회전주기성분제거에 대한 연구)

  • Choi, Jeong-Hyun;Lee, Sang-Ju;Park, Ju-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.409-412
    • /
    • 2005
  • Just as the vibration modes of a beam are dependent on its end constraints or boundary conditions. Vibration modes of a tire are dependent on its patch and spindle constraints. This dependence is key to understanding the dynamic properties of a tire and is apparent in various analytical and experimental investigations in the literature. One of the main task in a modal analysis is the measurement of the Frequency Response Function (FRFs). Because all the subsequent analysis is based on these FRFs, their quality is critically important in obtaining accurate modal parameter estimates. In rotating systems, FRFs are frequently contaminated by harmonic peaks related to such factors as imbalance, misalignment. This harmonic peaks appear in the FRFs as sharp spikes, which can be erroneously treated in modal curve-fitting procedures as structural modes. The harmonic peaks removal method is demonstrated by application to modal analysis on rotating tires. The results show substantial improvement in FRF quality.

  • PDF

Optimal Design of a New Rolling Mill Based upon Stewart Platform Manipulator : Maximization of Kinematic Manipulability (병렬구조 신 압연기의 최적설계 : 조작성 및 제어성능의 최대화)

  • Hong, Geum-Sik;Lee, Seung-Hwan;Choe, Jin-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.764-775
    • /
    • 2002
  • A kinematic and dynamic optimal design of a new parallel-type rolling mill based upon Stewart platform manipulator is investigated. To provide sufficient degrees-of-freedom in the rolling process and the structural stability of each stand, a parallel manipulator with six legs is considered. The objective of this new parallel-type rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of the rolls, and tension of the strip. By splitting the weighted Jacobian matrices Into two parts, the linear velocity, angular velocity, force, and moment transmissivities are analyzed. A manipulability measure, the ratio of the manipulability ellipsoid volume and the condition number of a split Jacobian matrix, is defined. Two kinematic parameters, the radius of the base and the angle between two neighboring Joints, are optimally designed by maximizing the global manipulability measure in the entire workspace. The maximum force needed in the hydraulic actuator is also calculated using the structure determined through the kinematic analysis and the Plucker coordinates. Simulation results are provided.

Study of ball bearing fatigue damage using vibration analysis: application to thrust ball bearings

  • Yessine, Toumi M.;Fabrice, Bolaers;Fabien, Bogard;Sebastien, Murer
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.325-336
    • /
    • 2015
  • This paper presents a study based on the damage due to the fatigue life of thrust ball bearings using vibratory analysis. The main contribution of this work lies in establishing a relation between modal damping and the rolling contact fatigue damage of the thrust ball bearing. Time domain signals and frequency spectra are extracted from both static and dynamic experiments. The first part of this research consists in measuring the damping of damaged thrust ball bearings using impact hammer characterization tests. In a second part, indented components representing spalled bearings are studied to determine the evolution of damping values in real-time vibration spectra using the random decrement method. Dynamic results, in good agreement with static tests, show that damping varies depending on the component's damage state. Therefore, the method detailed in this work will offer a possible technique to estimate the thrust ball bearing fatigue damage variation in presence of spalling.

Effect of friction and eccentricity on rebbing phenomenon (회전마멸현상에서의 마찰과 편심의 영향)

  • 최연선;김준모;정호권
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.819-825
    • /
    • 1996
  • Nonlinear dynamic characteristics of rubbing phenomenon in rotor dynamics are investigated experimentally and numerically. Rubbing phenomenon occurs when rotor contacts with stator during whirling and causes the large amplitude of vibration, high whirl frequencies, and possibly catastrophic failure. Rubbing has various types of forward whirl, backward rolling, backward slipping, and partial rub depending on the system parameters of rotating machinery and running speed. Experiments are performed for forward whirl and backward whirl. And numerical analysis are conducted to explain the changes between backward rolling and backward slipping. Experimental and numerical results show that the types of whirling motion depends on the friction coefficient between rotor and stator and the eccentricity of rotor.

  • PDF

The Prediction of Rolling Contact Fatigue of Wheels for a Korea High Speed Train (한국형 고속철도 차량의 차륜의 구름접촉 피로 예측)

  • Choi Jeong Heum;Han Dong-Chul;Kim Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1109-1114
    • /
    • 2005
  • The rolling contact fatigue of wheels for high speed trains is a matter of increasing importance. The wheel damages from fatigue crack makes noise up and safety down. RCF-casued accidents cause traffic congestion and economical costs as well as personal injuries. In this study, we examine the rolling contact fatigue of wheels for power car running at 300km/h. Using the results of multi-body dynamic analysis and the proposed procedure of Ekberg, we calculate the fatigue index of surface-initiated fatigue, subsurface-initiated fatigue and fatigue initiated at deep material defects. As a result. the fatigue index shows us whether fatigue will appear and in which form. In addition, we present Shakedown map on surface-initiated fatigue.

  • PDF

Developement of the Wheel-Rail Contact Algorithm and Dynamic Analysis (휠-레일 접촉 알고리즘 개발 및 동역학 해석)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Kim, Ji-Young
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.963-969
    • /
    • 2010
  • The railway vehicle consists of wires, bodies, bogies and wheelsets, and each part has very complex mechanism. In this paper, wheel-rail contact algorithm is implemented using C++ and inserted into the ODYN which is a dynamic analysis program. To analyze wheel-rail contact mechanism, information such as contact points, contact angle and rolling radius is calculated according to the wheel and rail profile. Using this information, a table for the calculation of the wheel-rail contact analysis is made according to the lateral displacement. And, the creepage and normal force are calculated and a creep force is estimated by the FASTSIM. To verify the reliability of the wheel-rail contact algorithm, results of the program are compared with the ADAMS/Rail and paper. Finally, a wheelset of the railway vehicle is modeled using ODYN and simulated static and dynamic analysis. And, to verify the reliability of the simulation results, a displacement, velocity, acceleration and force are compared with results of ADAMS/Rail.

  • PDF

Dynamic Modeling and Analysis of Control Systems for Skin Pass Mill (조질 압연기의 동적 모델링과 제어시스템 분석)

  • 이규택;이원호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.316-316
    • /
    • 2000
  • SPM dynamic model was developed by using Bland & Ford formulas considered elastic zone in roll gap, gauge meter equation, tension equation, speed equation and actuator models. And SPM controllers of the field were done model ing. It was shown the efficiency of constant tension, rol1ing force and elongation controllers by the simulation program and it was recommended the proper gain to the controllers of the field.

  • PDF