• Title/Summary/Keyword: Dynamic penetration

Search Result 254, Processing Time 0.026 seconds

Study on Shear Strength Using a Portable Dynamic Cone Penetration Test and Relationship between N-Nc (소형동적콘관입시험을 이용한 전단강도 산정 및 N-Nc 상관관계 연구)

  • Kim, Hyukho;Lim, Heuidae
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.145-157
    • /
    • 2017
  • Because of Recent intensive rainfall, nationally landslides and slope failure phenomenon has been frequently occur. Providing proposed-measures to the natural disasters that occur in these localities and the slope, must be derived ground of strength parameters(shear strength) as a design input data. However, it is such as extra deforestation and a lot of economic costs in order to make the access to the current area and the slopes ground survey is required. Thus, by small dynamic cone penetration test machine using the human to carry in the field, it is possible to easily measure the characteristics and strength constant of the ground of more than one region. In this study through researching analysis of the domestic and foreign small dynamic cone penetration test method, it has proposed a cone material and test methods suitable for the country. Cone penetration test Nc in the field has comparated with analysis of the value and the standard penetration test N value. And, in addition to this, direct shear test and borehole shear test were performed by depth, bedrock, and soil type and passing #200 and the correlation of the Nc value. In particular, in the present study, for the sandy soil that has distict distribute in mountain, it is proposed relation of shear strength corresponding to the Nc value (cohesion and internal friction angle) in order to calculate such effective ground shear strength.

Development of a Software to Evaluate the CPES(Cable Penetration Fire Stop) System in Nuclear Power Plane I (원자력발전소 케이블관통부 충전시스템 평가용 소프트웨어 개발 I)

  • 윤종필;권성필;조재규;윤인섭
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • In this work the dynamic heat transfer occurring in a cable penetration fire stop system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealants. Here was carried out an experiment to observe the heat transfer in the cable penetration fire stop system made of DOW CORNING products. The dynamic heat transfer occurring in the fire stop system is formulated in a parabolic partial differential equation subjected to a set of initial and boundary conditions. And it was modeled, simulated, and analyzed. The simulation results were illustrated in three-dimensional graphics and were compared with experimental data. Through the simulations, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable streams. It also was found that the dynamic heat transfer through the cable streams was one of the most dominant factors, and the feature of heat conduction could be understood as an unsteady-state process. It is certain that these numerical results are useful for making a performance-based design for the cable penetration fire stop system.

A Study on the Improvement of Penetration Capability of a Shaped Charge by Controlling the Jet Mass Parameters (제트 질량 변수 조절에 의한 성형작약 관통성능 증대 연구)

  • So, Byeongkwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.566-573
    • /
    • 2015
  • The most important factor for the penetration performance of shaped charge is the liner design. By designing the liner to have properties of both high jet tip velocity and long jet break-up time, the better penetration performance could be acquired. Usually it is very difficult to satisfy above two conditions simultaneously. In this study, the liner with the shape of ogive was developed to have relatively larger jet mass compared to the conventional trumpet liner. The designed shaped charge showed jet properties with high jet tip velocity and long jet break-up time by using ogive liner and wave shaper. A commercially available hydro-dynamic code AUTODYN-2D was used for numerical analysis of jet formation. The flash X-ray test and the static penetration test were conducted to verify the results of numerical analysis.

재봉(裁縫)바늘의 위편성물(緯編聖物) 관통(貫通)에 관한 연구(硏究)

  • Lee, Choon-Gye
    • Journal of the Korean Society of Costume
    • /
    • v.11
    • /
    • pp.51-60
    • /
    • 1987
  • The penetration force of needle and penetration energy kave been investigated, in order to research into the sewing factors that influence the weft knitted fabric with high elastic property. The results of the studies are a follows: (1) As the results have showed a high correlativity between the needle penetration energy and force, it proves that the dynamic energy produced by the friction of the needle as it penetrates and withdraws from the knitted fabric contributes to the heat growth of the needle. (2) To reduce frictional force the use of thin needles, medium ball point needle and super needle are effective. (3) The reduction in number of plies of fabric or also in the case of a decrease in penetration speed have been effective in lowering the penetration energy and force.

  • PDF

Improvement of waste landfill by dynamic compaction method (동다짐공법에 의한 쓰레기매립지반의 개량특성 분석)

  • 정하익;곽수정
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.404-410
    • /
    • 2002
  • Dynamic compaction is an efficient ground improvement technique for loose soils and waste landfill. The improvement is obtained by controlled high energy tamping and its effects vary with the soil properties and energy input. This study demonstrated the application of dynamic compaction method for the improvement of waste landfill in construction site. Various tests and measurements such as standard penetration test, bore hole loading test, crater settlement, ground settlement, pore water pressure were peformed during dynamic compaction field test. From the field test results, the efficiency of dynamic compaction method for the improvement of waste landfill was proved.

  • PDF

Evaluating Stability of a Transient Cut during Endmilling using the Dynamic Cutting Force Model

  • Seokjae Kang;Cho, Dong-Woo;Chong K. Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.67-75
    • /
    • 2000
  • virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system the consists of structural and cutting dynamic. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without run out and penetration effects. This study considers both tool run out and penetration effects, using experimental modal analysis, to obtain predictions that are more accurate. The machining stability during a corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF

Evaluation of Active Layer Depth using Dynamic Cone Penetrometer (동적 콘 관입기를 이용한 활동층 심도평가)

  • Hong, Won-Taek;Kang, Seonghun;Park, Keunbo;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • An active layer distributed on surface of an extreme cold region causes a frost heave by repeating the freezing and thawing according to the seasonal temperature change. Since the height of frost heave is greatly affected by the thickness of active layer, an accurate evaluation of the thickness of active layer is necessary for the safe design and construction of the infrastructure in the extreme cold region. In this study, dynamic cone penetrometer, which is miniaturized in-situ penetration device, is applied for the evaluation of active layer depth distribution. As the application tests, two dynamic cone penetration tests were conducted on the study sites located in Solomon and Alaska. In addition, ground temperature variations were obtained. As the results of the application tests, the depth of interface between the active layer and the permafrost was evaluated from the difference in dynamic cone penetration indexes of the active layer and the permafrost, and a layer was detected around the interface considered as an ice lens layer. Also, the interface depths between the above zero and the below zero temperature determined from the ground temperature variations correspond with the interface depths evaluated from the dynamic cone penetration tests. This study demonstrates that the dynamic cone penetrometer may be a useful tool for the evaluation of the active layer in the extreme cold region.

Design and Dynamic Performance Analysis of a Stand-alone Microgrid - A Case Study of Gasa Island, South Korea

  • Husein, Munir;Hau, Vu Ba;Chung, Il-Yop;Chae, Woo-Kyu;Lee, Hak-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1777-1788
    • /
    • 2017
  • This paper presents the design and dynamic analysis of a stand-alone microgrid with high penetration of renewable energy. The optimal sizing of various components in the microgrid is obtained considering two objectives: minimization of levelized cost of energy (LCOE) and maximization of renewable energy penetration. Integrating high renewable energy in stand-alone microgrid requires special considerations to assure stable dynamic performance, we therefore develop voltage and frequency control method by coordinating Battery Energy Storage System (BESS) and diesel generators. This approach was applied to the design and development of Gasa Island microgrid in South Korea. The microgrid consists of photovoltaic panels, wind turbines, lithium-ion batteries and diesel generators. The dynamic performance of the microgrid during different load and weather variations is verified by simulation studies. Results from the real microgrid were then presented and discussed. Our approach to the design and control of microgrid will offer some lessons in future microgrid design.

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.