• 제목/요약/키워드: Dynamic penetration

검색결과 254건 처리시간 0.021초

유한요소해석을 이용한 원뿔형 대응체 방호 효과 분석 (Analysis of Protection Capability of a Conical Shaped Protector)

  • 김희철;김종봉;정진환;유요한
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.563-571
    • /
    • 2018
  • In order to effectively protect a penetrator, the conically shaped protector was proposed and the protection capability was investigated. The collision and penetration of the penetrator with the protector were analyzed using dynamic finite element analysis. The post impact behaviors of the penetrator, i.e., flying velocity and the change of attitude angle, were monitored to investigate the protection capability. The flying velocity and the attitude angle are used to investigate the deviation and the penetration power respectively. The effect of rotation speed of the protector and the collision position on the protection capability is investigated in the viewpoint of deviation and attitude angle when penetrator colliding with our tank.

스리랑카 콜롬보항만 시공 및 설계사례 (ELIPO 및 COLPO 현장) (Case studies on construction and design in Colombo port, Sri Lanka)

  • 이승원;정윤영;이갑열;박경호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.44-57
    • /
    • 2010
  • The purpose of this paper is to introduce case studies on 2 projects for the construction of port facilities in Colombo, Sri lanka. In Queen Elizabeth quay development project in 2000, the damage at the bottom of steel tubular piles were occurred when piles were driven into subsoil for piled wharf structure in Stage 1. In order to prevent same incident in Stage 2 & 3, the pile driveability analysis were executed by dynamic formulas, analysis program, test driving and pile load tests. Through pile driveability analysis, prevention plans were proposed. In Colombo port expansion project in 2008, the mv method was applied to predict a primary consolidation settlement of a subsoil under a breakwater in the calculation stage. The $m_v$ was estimated from results of cone penetration tests and the final settlement by consolidation was calculated with it.

  • PDF

Visual Precise Measurement of Pile Rebound and Penetration Movement Using a High-Speed Line-Scan Camera

  • Lim, Mee-Seub;You, Bum-Jae;Oh, Sang-Rok;Han, Song-Soo;Lee, Sang-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.341-346
    • /
    • 2002
  • When a construction company builds a high structure. many piles should be driven into the ground by a hammer whose weight is 7,000 kg in order to make the ground under the structure safe and strong. So. it is essential to determine whether a pile is penetrated into the ground enough to support the weight of the structure since ground characteristics at different locations are different each other. This paper proposes a visual measurement system for pile rebound and penetration movement including vibration using a high-speed line-scan camera and a specially designed mark to recognize two-dimensional motion parameters of the mark using only a line-scan camera. A mark stacking white and black right-angled triangles is used for the measurement, and movement information for vertical distance, horizontal distance and rotational angle is determined simultaneously. Especially- by adopting a line-scan CCD camera whose line rate is 20 ㎑. the measurement performance of dynamic characteristics of the pile at impact instant is improved dramatically.

도심지 굴착지반의 지반특성 비교 (A Comparison of Soil Characteristics of Excavated Soils in Urban Area)

  • 김병찬;이진행
    • 한국방재안전학회논문집
    • /
    • 제10권1호
    • /
    • pp.35-42
    • /
    • 2017
  • 본 연구는 지반함몰 발생 및 피해저감을 위한 지반 안정성 평가 및 굴착 보강 기술개발 과제 중 지반함몰 위험성 예측 및 평가기술 개발을 위한 기초자료로 활용하기 위한 연구로 수도권 6개 굴착지역에 대한 문헌자료에 의한 강도정수 산정, 시추에 의한 지반조사 및 표준관입시험, 시추공을 이용한 하향식탄성파 결과를 이용하여 지반특성을 비교 연구 하였다. 연구결과 표준관입시험 결과인 N치와 문헌자료를 이용하여 지반정수를 산정하였고, 시추된 홀에 하향식탄성파탐사를 실시하여 지반의 동적지반특성을 확인하였다. 각 지역별 지반특성을 확인한 결과 지반물성치가 상이하게 나타나는 것을 볼 수 있다. 이는 각 현장별 N치와 문헌자료 조사자의 경험적 지반정수가 반영된 결과인 것으로 판단된다.

공기보조 분사기와 고압 선회식 분사기의 특성 비교- Part 1:유량 및 거시적 분무특성 (Comparison of Overall Characteristics between an Air-Assisited Fuel Injector and a High-Pressure Swirl Injector-Part I: Flow rate and Macroscopic Spray Characteristics)

  • 장창수;최상민
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.20-27
    • /
    • 2000
  • Characteristics of two favorite injection tools for gasoline direct injection application were compared. An air-assisted fuel injector (AAFI) and a high-pressure swirl injector (HPSI) were designed and fabricated for prototype development, and the characterization strategies and processes for both injection tool have been arranged in parallel. Characterization works were carried out mainly through measurements, and in some cases, computational fluid dynamic analysis was utilized. In this paper, overall characteristics defined as flow rate, spray pattern, penetration, internal spray structure and drop size distribution, was discussed. The AAFI was found to be advantageous in flexibility of fuel flow rate, and the HPSI in stability and precision. Spray shape factor was introduced to describe the development of intermittent sprays from both injectors. Axial penetration appeared to be almost linear in the case of the AAFI while its speed continuously decreased with time in the HPSI.

  • PDF

60TRIP강을 적용한 차체의 측면충돌 해석 (Side Impact Analysis of an Auto-body with 60TRIP Steel for Side Members)

  • 임지호;김기풍;허훈
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.164-171
    • /
    • 2003
  • The side impact behavior has been investigated when the high strength steel 60TRIP(Transformation Induced Plasticity) is replaced for the conventional low-carbon steel for weight reduction of an auto-body. The side impact analysis was carried out as specified in US-SINCAP with the center pillar and the side sill of the conventional steel or 60TRIP. For accurate impact analyses, the dynamic material properties are adopted with the Johnson-Cook model. The analysis results demonstrate that the penetration of the side members is remarkably reduced when 60TRIP is employed for the center pillar and the side sill replacing the conventional steel. The crashworthiness in the side impact is considerably improved with less penetration of the side members and less acceleration of the opposite floor.

인공신경망을 이용한 풍화토의 강도정수 산정 (Assessment of Shear Strength Parameter for Weathered Soils Using Artificial Neural Network)

  • 이무철;이송
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권3호
    • /
    • pp.147-154
    • /
    • 2008
  • 풍화토 사면은 장시간 공기에 노출되거나 물과 접촉을 하게 되면 전단강도가 급격히 저하되며 계절에 따른 수위의 변화가 매우 큰 댐사면의 경우는 강도저하가 더욱 크게 발생한다. 풍화토 사면의 강도저하 파악을 위하여 반복전단시험 및 수침 건조를 반복한 시료에 대한 잔류강도 시험을 통해 포화에 따른 강도의 저하를 파악하였다. 또한 소형동적콘관입시험기를 이용하여 관입타격횟수와 전단강도정수관계를 파악하고 인공신경망 해석을 통하여 관입타격횟수 Nc를 이용한 전단강도정수의 예측이 용이하도록 상관식을 구성하였다.

Design of a piezovibrocone and calibration chamber

  • Samui, Pijush;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • 제2권3호
    • /
    • pp.177-190
    • /
    • 2010
  • This paper presents the details of indigenous development of the piezovibrocone and calibration chamber. The developed cone has a cylindrical friction sleeve of $150cm^2$ surface area, capped with a $60^{\circ}$ apex angle conical tip of $15cm^2$ cross sectional area. It has a hydraulic shaker, coupled to the cone penetrometer with a linear displacement unit. The hydraulic shaker can produce cyclic load in different types of wave forms (sine, Hover sine, triangular, rectangular and external wave) at a range of frequency 1-10 Hz with maximum amplitude of 10 cm. The piezovibrocone can be driven at the standard rate of 2 cm/sec using a loading unit of 10 ton capacity. The calibration chamber is of size $2m{\times}2m{\times}2m$. The sides of the chamber and the top as well as the bottom portions are rigid. It has a provision to apply confining pressure (to a maximum value of $4kg/cm^2$) through the flexible rubber membrane inlined with the side walls of the calibration chamber. The preliminary static as well as dynamic cone penetration tests have been done sand in the calibration chamber. From the experimental results, an attempt has been made to classify the soil based on friction ratio ($f_R$) and the cone tip resistance ($q_c$).

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

유조선 선수부의 내충돌 구조설계에 관한 연구 -이상화 모델의 충돌거동 분석(1) (A study on the Crashworthiness Design of Bow Structure of Oil Carriers -Collision Behaviour of Simplified Models(1))

  • 신영식;박명규
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.120-127
    • /
    • 2001
  • The potential pollution problems resulting from tanker collision necessitate the requirement for an effective structural design and the development of relevant safety regulations. During a few decades, the great effort has been made by the international Maritime Organization and the Administration, etc, to reduce oil spillage from collision accidents. However there is still a need for investigation in the light of structural evaluation method for the experiments and rational analysis, and design development for an operational purpose of ships. This study aims for investigating a complicated structural response of bow structures of simplified models and oil carriers for assessing the energy dissipation and crushing mechanics of the striking vessels through a methodology of the numerical analysis for the various models and its design changes. Through these study an optimal bow construction absorbing great portion of kinetic energy at the least penetration depth prior to reach to the cargo area and an effective location of collision bulkhead are investigated. In order to obtain a rational results in this study, three stages of collision simulation procedures have been performed step by step as follows; 1) 16 simplified ship models are used to investigate the structural response against bow collision with variation of primary and secondary members. Mass and speed are also varied in four conditions. 2) 21 models consisted of 5 sizes of the full scaled oil carriers are used to perform the collision simulation with the various sizes and deadweight delivered in a recent which are complied with SOLAS and MARPOL. 3) 36 models of 100l oil carrier are used to investigate the structural response and its influence to the collision bulkhead against bow collision in variation with location of collision bulkhead, primary members, framing system and colliding conditions, etc. By the first study using simplified models the response of the bow collision is synthetically evaluated for the parameters influencing to the absorbed energy, penetration depth and impact force, etc.

  • PDF