• Title/Summary/Keyword: Dynamic optimal allocation

Search Result 75, Processing Time 0.022 seconds

A Study on Dynamic Asset Allocation Strategy for Optimal Portfolio Selection

  • Lee, Hojin
    • East Asian Economic Review
    • /
    • v.25 no.3
    • /
    • pp.310-336
    • /
    • 2021
  • We use iterative numerical procedures combined with analytical methods due to Rapach and Wohar (2009) to solve for the dynamic asset allocation strategy for optimal portfolio demand. We compare different optimal portfolio demands when investors in each country have different access to overseas and domestic investment opportunities. The optimal dynamic asset allocation strategy without foreign investment opportunities leads domestic investors in Korea, Hong Kong, and Singapore to allocate more funds to domestic bonds than to domestic stocks. However, the U.S. investors allocate more wealth to domestic stocks than to domestic bonds. Investors in all countries short bills at a low level of risk aversion. Next, we investigate dynamic asset allocation strategy when domestic investors in Korea have access to foreign markets. The optimal portfolio demand leads investors in Korea to allocate most resources to domestic bonds and foreign stocks. On the other hand, the portfolio weights on foreign bonds and domestic stocks are relatively low. We also analyze dynamic asset allocation strategy for the investors in the U.S., Hong Kong, and Singapore when they have access to the Korean markets as overseas investment opportunities. Compared to the results when the investors only have access to domestic markets, the investors in the U.S. and Singapore increase the portfolio weights on domestic stocks in spite of the overseas investment opportunities in the Korean markets. The investors in the U.S., Hong Kong, and Singapore short domestic bills to invest more than initial funds in risky assets with a varying degree of relative risk aversion coefficients without exception.

Optimum Water Allocation System Model in Keumho River Basin with Mathematical Programming Techniques (수리계획을 이용한 금호강유역의 최적 물배분 시스템모델)

  • 안승섭;이증석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.74-85
    • /
    • 1997
  • This study aims at the development of a mathematical approach for the optimal water allocation in the river basin where available water is not in sufficient. Its optimal allocation model is determined from the comparison and analysis of mathematical programming techniques such as transportation programming and dynamic programming models at its optimal allocation models. The water allocation system used in this study is designed to be the optimal water allocation which can satisfy the water deficit in each district through inter-basin water transfer between Kumho river basin which is a tributary catchment of Nakdong river basin, and the adjacent Hyungsan river basin, Milyang river basin and Nakdong upstream river basin. A general rule of water allocation is obtained for each district in the basins as the result of analysis of the optimal water allocation in the water allocation system. Also a comparison of the developed models proves that there is no big difference between the models Therefore transportation programming model indicates most adequate to the complex water allocation system in terms of its characteristics It can be seen, however, that dynamic programming model shows water allocation effect which produces greater net benefit more or less.

  • PDF

An Dynamic Optimal Allocation for the Stratified Randomized Response Technique (층화확률화 응답기법에 대한 동적 최적배분)

  • Son, Chang-Kyoon;Hong, Ki-Hak;Lee, Gi-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.595-603
    • /
    • 2009
  • Typically the standard optimal allocation method distributes the sample for each stratum considering survey cost. In case of varying survey cost for each survey unit, we need to consider more practical allocation method. In other words, according to characteristics of an individual unit, we consider the optimal dynamic allocation method which first selects the survey unit having maximum value of benefit cost ratio. In terms of this, the proposed allocation method is different from standard optimal allocation method which allocate samples for each stratum and selects the random sample according to each size of sample. This paper is considered the dynamic optimal allocation method for the stratified randomized response technique which surveys for sensitive characteristic of survey units such as drug abuse, abortion, alcoholic. We prove the practical usefulness of proposed method using the numerical example.

Optimal Thrust Allocation for Dynamic Positioning of Deep-sea Working Vessel

  • Zhao, Luman;Roh, Myung-Il;Hong, Jeong-Woo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.94-105
    • /
    • 2015
  • In this study, a thruster allocation method of a deep-sea working vessel was proposed with the aims of producing the demanded generalized forces and moment for dynamic positioning while at the same time minimizing total power. For this, an optimization problem for thrust allocation was mathematically formulated with design variables, objective function, and constraints. The genetic algorithms (GA) was used to solve the formulated problem. The proposed method was applied to an example of finding optimal thrust allocation of the deep-sea working vessel having 5 thrusters. The result showed that the method could be used to determine better strategy for thruster allocation of the vessel as compared to existing study.

A Study of Buffer Allocation in FMS based on Deadlock and Workload (Deadlock과 Workload에 따른 FMS의 버퍼 Capacity 결정에 관한 연구)

  • 김경섭;이정표
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.63-73
    • /
    • 2000
  • Due to the complexity of part flow and limited resources, FMS(Flexible Manufacturing System) develops blocking, starvation and deadlock problems, which reduce its performance. In order to minimize such problems buffers are imposed between workstations of the manufacturing lines. In this paper, we are concerned with finding the optimal buffer allocation with regard to maximizing system throughput in limited total buffer capacity situation of FMS. A dynamic programming algorithm to solve the buffer allocation problem is proposed. Computer simulation using Arena is experimented to show the validation of the proposed algorithm.

  • PDF

Optimal Bandwidth Allocation and QoS-adaptive Control Co-design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.596-606
    • /
    • 2008
  • In this paper, we present a co-design methodology of dynamic optimal network-bandwidth allocation (ONBA) and adaptive control for networked control systems (NCSs) to optimize overall control performance and reduce total network-bandwidth usage. The proposed dynamic co-design strategy integrates adaptive feedback control with real-time scheduling. As part of this co-design methodology, a "closed-loop" ONBA algorithm for NCSs with communication constraints is presented. Network-bandwidth is dynamically assigned to each control loop according to the quality of performance (QoP) information of each control loop. As another part of the co-design methodology, a network quality of service (QoS)-adaptive control design approach is also presented. The idea is based on calculating new control values with reference to the network QoS parameters such as time delays and packet losses measured online. Simulation results show that this co-design approach significantly improves overall control performance and utilizes less bandwidth compared to static strategies.

Optimal Allocation of Purchase Orders in Dynamic Bidding (동적 전자경매 환경에서의 최적 구매주문 할당)

  • Rim, Suk-Chul;Lee, Sang-Won;Kim, Hyun-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.3
    • /
    • pp.322-328
    • /
    • 2007
  • Highly standardized products are suitable for automated purchasing using electronic commerce technology, where the price becomes the most important factor. Suppliers can change the prices dynamically based on the inventory level and market situation in order to maximize the sales and profit. In the virtual marketplace where multiple customers purchase multiple standardized products from multiple suppliers repetitively, customers can purchase the required amount of each item as a dynamic bidding by allocating purchase orders to the suppliers based on the current price. Customers need a method to quickly determine the optimal allocation of orders to the suppliers using the dynamically changing data to minimize the total cost. We present a LP model which minimizes the sum of the total price plus transportation cost for this problem. Simulation results using random data show meaningful reduction of the total cost.

Redundancy Optimization for the Mixed Reliability System

  • Sok, Yong-U
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.2
    • /
    • pp.143-158
    • /
    • 2000
  • This paper deals with the problem of redundancy allocation for the mixed reliability system in an optimal way. Two kinds of the reliability system are considered for optimal allocation of parallel redundancy. The problem is approached as the optimization problems using th standard method of dynamic programming(DP). The algorithm for solving the optimal redundancy allocation is proposed and then the DP algorithm is applied to two numerical examples such as maximization of reliability subject to an allowable cost-constraint and minimization of the total cost subject to the specified minimum reliability-constraint. A consequence of this study is that the developed computer program package can be applied to the optimal redundancy allocation for the mixed reliability system.

  • PDF

Optimal Allocation of Distributed Solar Photovoltaic Generation in Electrical Distribution System under Uncertainties

  • Verma, Ashu;Tyagi, Arjun;Krishan, Ram
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1386-1396
    • /
    • 2017
  • In this paper, a new approach is proposed to select the optimal sitting and sizing of distributed solar photovoltaic generation (SPVG) in a radial electrical distribution systems (EDS) considering load/generation uncertainties. Here, distributed generations (DGs) allocation problem is modeled as optimization problem with network loss based objective function under various equality and inequality constrains in an uncertain environment. A boundary power flow is utilized to address the uncertainties in load/generation forecasts. This approach facilitates the consideration of random uncertainties in forecast having no statistical history. Uncertain solar irradiance is modeled by beta distribution function (BDF). The resulted optimization problem is solved by a new Dynamic Harmony Search Algorithm (DHSA). Dynamic band width (DBW) based DHSA is proposed to enhance the search space and dynamically adjust the exploitation near the optimal solution. Proposed approach is demonstrated for two standard IEEE radial distribution systems under different scenarios.

Bit Allocation for Interframe Video Coding Systems

  • Kim, Wook-Joong;Kim, Seong-Dae;Kim, Jin-Woong
    • ETRI Journal
    • /
    • v.24 no.4
    • /
    • pp.280-289
    • /
    • 2002
  • In this work, we present a novel approach to the bit allocation problem that aims to minimize overall distortion subject to a bit rate constraint. The optimal solution can be found by the Lagrangian method with dynamic programming. However, the optimal bit allocation for block-based interframe coding is practically unattainable because of the interframe dependency of macroblocks caused by motion compensation. To reduce the computational burden while maintaining a result close to the optimum, i.e., near optimum, we propose an alternative method. First, we present a partitioned form of the bit allocation problem: a "frame-level problem" and "one-frame macroblock-level problems." We show that the solution to this new form is also the solution to the conventional bit allocation problem. Further, we propose a bit allocation algorithm using a "two-phase optimization technique" with an interframe dependency model and a rate-distortion model.

  • PDF