• 제목/요약/키워드: Dynamic modeling

검색결과 2,963건 처리시간 0.033초

편심형 MEMS 자이로스코프의 동적 모델링 및 해석 (Dynamic Modeling and Analysis of an Eccentric MEMS Gyroscope)

  • 하동진;신상하;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.792-797
    • /
    • 2004
  • Dynamic modeling of an eccentric MEMS gyroscope is presented and the dynamic characteristics of the gyroscope are investigated with the modeling method. It is found that the eccentricity of the MEMS gyroscope affects the dynamic characteristics significantly. Different from conventional MEMS gyroscopes, the zero-rate output is significantly reduced in this gyroscope. To obtain general guidelines of the gyroscope design, dimensionless parameters are first identified and the effects of the parameters on the gyroscope performance measures are investigated.

  • PDF

접촉을 이용한 2차원 조인트들의 모델링에 관한 연구 (Modeling of 2D Joints Using Contact)

  • 한형석;박태원
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.92-101
    • /
    • 1997
  • In this paper, modeling methods for 2D joints are proposed. Earlier methods for modeling 2D joints that use geometric relationships may not consider irregularities or dynamic effects of joints. In any case, it is important to consider irregularities or dynamic effects. To consider those, methods that use dynamic contacts are proposed. With the method, 2D joints that have irregularities or dynamic effects amy be model- ed and analyzed. 2D joints that are developed are revolute, translational, gear and point-follower joint.

  • PDF

잉여 다리 병렬형 로봇의 해석 (Analysis of parallel manipulators with redundant limbs)

  • 김성복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.730-733
    • /
    • 1996
  • This paper presents the kinematic and dynamic analysis of parallel manipulators with redundant limbs, obtained by putting additional limbs to an existing parallel manipulator. We develop the kinematic and dynamic models of a parallel, manipulator with redundant limbs. The redundancy in parallelism due to the increased number of limbs and the redundancy in actuation due to the increased number of active joints are considered in the modeling. Based on the derived models, we define the kinematic and dynamic manipulabilities of a parallel manipulator with redundant limbs. The effect of the redundant limbs on the performance of parallel manipulators is analyzed in terms of kinematic and dynamic manipulabilities.

  • PDF

잉여 조인트 병렬형 로봇의 해석 (Analysis of parallel manipulators with redundant joints)

  • 김성복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.371-374
    • /
    • 1996
  • This paper presents the kinematic and dynamic analysis of parallel manipulators with redundant joints, obtained by putting additional active joints to an existing parallel manipulator. We develop the kinematic and dynamic models of a parallel manipulator with redundant joints. The redundancy in serial chain, due to the increased number of joints per limb, is considered in the modeling. Based oh the derived models, we define the kinematic and dynamic manipulabilities of a parallel manipulator with redundant joints. The effect of the redundant joints on the performance of parallel manipulators is analyzed in terms of kinematic and dynamic manipulabilities.

  • PDF

잉여 구동 병렬형 로봇의 해석 (Analysis of parallel manipulators with actuation redundancy)

  • 김성복;김순석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.535-538
    • /
    • 1996
  • This paper presents the kinematic and dynamic analysis of parallel manipulators with actuation redundancy, obtained by replacing the passive joints of an existing parallel manipulator with the active ones. We develop the kinematic and dynamic models of a parallel manipulator with actuation redundancy. The multiplicity in selecting the controllable active joints among the increased number of active joints is considered in the modeling. Based on the derived models, we define the kinematic and dynamic manipulabilities of a parallel manipulator with actuation redundancy. The effect of the actuation, redundancy on the performance of parallel manipulators is analyzed in terms of kinematic and dynamic manipulabilities.

  • PDF

Evaluation of availability of nuclear power plant dynamic systems using extended dynamic reliability graph with general gates (DRGGG)

  • Lee, Eun Chan;Shin, Seung Ki;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.444-452
    • /
    • 2019
  • To assess the availability of a nuclear power plant's dynamic systems, it is necessary to consider the impact of dynamic interactions, such as components, software, and operating processes. However, there is currently no simple, easy-to-use tool for assessing the availability of these dynamic systems. The existing method, such as Markov chains, derives an accurate solution but has difficulty in modeling the system. When using conventional fault trees, the reliability of a system with dynamic characteristics cannot be evaluated accurately because the fault trees consider reliability of a specific operating configuration of the system. The dynamic reliability graph with general gates (DRGGG) allows an intuitive modeling similar to the actual system configuration, which can reduce the human errors that can occur during modeling of the target system. However, because the current DRGGG is able to evaluate the dynamic system in terms of only reliability without repair, a new evaluation method that can calculate the availability of the dynamic system with repair is proposed through this study. The proposed method extends the DRGGG by adding the repair condition to the dynamic gates. As a result of comparing the proposed method with Markov chains regarding a simple verification model, it is confirmed that the quantified value converges to the solution.

전체운동을 하는 단순지지 유연 구조물의 동적해석 (Dynamic Analysis of Simply Supported Flexible Structures Undergoing Large Overall Motion)

  • 유홍희
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1363-1370
    • /
    • 1995
  • A nonlinear dynamic modeling method for simply supported structures undergoing large overall motion is suggested. The modeling method employs Rayleigh-Ritz mode technique and Von Karman nonlinear strain measures. Numerical study shows that the suggested modeling method provides qualitatively different results from those of the Classical Linear Cartesian modeling method. Especially, natural frequency variations and residual deformation due to membrane strain effects are observed in the numerical results obtained by the suggested modeling method.

Solution verification procedures for modeling and simulation of fully coupled porous media: static and dynamic behavior

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • 제4권1호
    • /
    • pp.67-98
    • /
    • 2015
  • Numerical prediction of dynamic behavior of fully coupled saturated porous media is of great importance in many engineering problems. Specifically, static and dynamic response of soils - porous media with pores filled with fluid, such as air, water, etc. - can only be modeled properly using fully coupled approaches. Modeling and simulation of static and dynamic behavior of soils require significant Verification and Validation (V&V) procedures in order to build credibility and increase confidence in numerical results. By definition, Verification is essentially a mathematics issue and it provides evidence that the model is solved correctly, while Validation, being a physics issue, provides evidence that the right model is solved. This paper focuses on Verification procedure for fully coupled modeling and simulation of porous media. Therefore, a complete Solution Verification suite has been developed consisting of analytical solutions for both static and dynamic problems of porous media, in time domain. Verification for fully coupled modeling and simulation of porous media has been performed through comparison of the numerical solutions with the analytical ones. Modeling and simulation is based on the so called, u-p-U formulation. Of particular interest are numerical dispersion effects which determine the level of numerical accuracy. These effects are investigated in detail, in an effort to suggest a compromise between numerical error and computational cost.

스튜어트 플랫폼형 평행식 로봇의 동역학적 모델링과 해석 (Dynamic modeling and analysis for the stewart platform type of parallel robot)

  • 장형배;한창수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.965-970
    • /
    • 1992
  • A dynamic modeling and analysis for the Stewart platform type of parallel robot is addressed. The dynamic modeling is performed based on the method of Kinematic Influence Coefficients(KIC) and transfering of the generalized coordinates. The optimum geometric configurations of the system that minimize the actuating forces at the linear actuator are found for several trajectories by using the optimization technique.

  • PDF

제동특성 예측을 위한 철도차량의 동적거동 모델링 (Dynamic Behavior Modeling of a Train Vehicle for The Prediction of Braking Characteristics)

  • 박준혁;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1631-1638
    • /
    • 2007
  • In this paper, a modeling for the dynamic behavior of a train vehicle is suggested for the prediction of the braking characteristics. In the dynamic modeling, effects of the primary and secondary suspension elements are considered and interactions between two vehicles are also estimated. This study can offer some fundamental results for a further research to enhance the braking performance using active braking control.

  • PDF