• Title/Summary/Keyword: Dynamic load profile

Search Result 65, Processing Time 0.02 seconds

Study on Evaluation of Energy Efficiency Rating of the Buildings (건축물의 에너지효율등급 평가에 관한 연구)

  • Son, Won-Tug;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.65-69
    • /
    • 2012
  • Since 2010, enhancement of the building energy efficiency and certification system and public office building should have been acquiring the first grade of Building Energy Efficiency. The Building Energy Efficiency Rating evaluation tool and Dynamic Analysis Energy simulation program for Building Energy Efficiency are widely used. The suitability to those programs have been discussed as a variety of programs have been used accordingly. In this study, evaluated the characteristic of Building Energy Efficiency Rating tool(ECO2) of the business building. At a result, the variables on the Weather Data, building Profile and building Load property in hourly between those Building Energy Efficiency evaluation tools have different.

Soil Stress State Determination Using a Ball-type Transducer (Ball형 측정기를 이용한 토중 응력 상태의 계측)

  • 전형규
    • Journal of Biosystems Engineering
    • /
    • v.29 no.4
    • /
    • pp.301-306
    • /
    • 2004
  • Soil stresses were measured beneath the centerline of one new 12.4R28 radial-ply tractor tire. The tire was operated with three inflation pressures(59㎪ 108㎪ and 157㎪) and a dynamic load of 14.2 kN and 20% slip. Soil stress state transducer(SST) measured the stresses in a hardpan soil profile. The depth of the SST was 250mm from soil surface. Analysis of the original soil stress data showed that the inflation pressure of tire did significantly affect the vertical stress. The major principal stresses calculated were more when the inflation pressure was 108㎪ than when it was 157㎪. The peak stresses of the major principal stresses presented more than those of the vertical stresses.

Biomechanical Comparative Study for Osteosynthesis of Pauwels Type III Femoral Neck Fractures: Conventional Devices versus Novel Fixed Angle Devices

  • Dae-Hyun Park;Young-Chae Seo;Yong-Uk Kwon;Soo-Hwan Jung;Seung-Jin Yoo
    • Hip & pelvis
    • /
    • v.34 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • Purpose: Osteosynthesis has been recommended for treatment of Pauwels type III femoral neck fractures in young patients. However, no implant of choice has been reported so far. This study was conducted in order to compare the fixation stability of two conventional fixation methods with three different novel fixed angle devices in this type of fracture. Materials and Methods: A total of 25 composite femurs (4th Generation Saw bone; Pacific Research Laboratories, USA) corresponding to human bone were used. Pauwels type III fracture type was uniformly reproduced. Specimens were fixed with a cannulated screw, cannulated screw with cable, and Intertan nail, dynamic hip screw, and IKEY nail. Measurement of failure loads and the rotational change of the femoral head fragment was performed for evaluation of fixation stability. Results: All implants were compared with cannulated screw and dynmaic hip screw. No meaningful improvement was observed for the cannulated screw with cable compared with the cannulated screw and dynamic hip screw. Meaningful improvement in load-to-failure and y-rotation and z-rotation was observed for both the Intertan nail and IKEY nail compared with the cannulated screw. However, compared with the dynamic hip screw, only the IKEY nail showed improvement in the same profile but the Intertan nail did not. Conclusion: Among novel fixed angle devices, meaningful improvement was observed for the IKEY nail compared with conventional implants. Strengths of this implant include biomechanical stability and simplicity of surgical technique, indicating that it may be another good option for osteosynthesis of Pauwels type III femoral neck fractures.

Flexible Body Dynamics Analysis of Agricultural Tractor Using 4-Post Road Simulator (4-Post Road Simulator 를 이용한 농용 트랙터의 유연 다물체 동역학 해석)

  • Park, Ji Soo;Lee, Kang Wook;Cho, Chong Youn;Yoon, Ji Won;Shin, Jai Yoon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 2015
  • Agricultural tractors are utilized on rough road such as rice paddy field. Therefore, static and dynamic load should be considered when simulating structural analysis with finite element analysis (FEA). But it consumes a lot of time and effort to measure dynamic load because of difficulty and complexity in modeling various field working load conditions and kinematics of machinery. In this paper, to reduce the efforts, 4-post road simulator is developed for agricultural tractor like modeling commercial vehicle. In proving ground test in our facility, I measured acceleration of front/rare axle and strain of body frame to validate input loads. The acceleration is used for defining input loads. And strain is validated with dynamics analysis including mode superposition method. As a result, I was able to calculate 4-post input road profiles, which represent similar proving ground profile with good reliability.

Characterization of the Chemical Mechanical Micro Machining for Single Crystal Silicon (실리콘의 화학기계적 미세가공 특성)

  • Jeong, Sang-Cheol;Park, Jun-Min;Lee, Hyeon-U;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.186-195
    • /
    • 2002
  • The mechanism of micro machining of reacted layer on silicon surface were proposed. The depth of reacted layer and the change of mechanical property were measured and analyzed. Depth of hydrated layer which is created on the surface of silicon by potassium hydrate was analyzed with SEM and XPS. The decrease of the micro victors hardness of silicon surface was shown with the increase of the concentration of potassium hydrate and the change of the dynamic friction coefficient by chemical reacted layer was measured due to the readiness of machining. The experiment of groove machining was done with 3-axis machine with constant load. With chemical mechanical micro machining the surface crack and burrs generated by both brittle and ductile micro machining were diminished. And the surface profile and groove depth was shown in accordance with the machining speed and reaction time with SEM and AFM.

Sliding Mode Control for Servo Motors Based on the Differential Evolution Algorithm

  • Yin, Zhonggang;Gong, Lei;Du, Chao;Liu, Jing;Zhong, Yanru
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.92-102
    • /
    • 2018
  • A sliding mode control (SMC) for servo motors based on the differential evolution (DE) algorithm, called DE-SMC, is proposed in this study. The parameters of SMC should be designed exactly to improve the robustness, realize the precision positioning, and reduce the steady-state speed error of the servo drive. The main parameters of SMC are optimized using the DE algorithm according to the speed feedback information of the servo motor. The most significant influence factor of the DE algorithm is optimization iteration. A suitable iteration can be achieved by the tested optimization process profile of the main parameters of SMC. Once the parameters of SMC are optimized under a convergent iteration, the system realizes the given performance indices within the shortest time. The experiment indicates that the robustness of the system is improved, and the dynamic and steady performance achieves the given performance indices under a convergent iteration when motor parameters mismatch and load disturbance is added. Moreover, the suitable iteration effectively mitigates the low-speed crawling phenomenon in the system. The correctness and effectiveness of DE-SMC are verified through the experiment.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part B: Analysis for the Effect of Explosion Loading Time According to the Natural Period for Target Structures - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part B: 고유주기에 따른 폭발하중 지속시간의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.197-205
    • /
    • 2015
  • Offshore structures for the gas production are exposed to the risk of gas leaks, and gas explosions can result in fatal damages to the primary structures as well as secondary structures. To minimize the damage from the critical accidents, the study of the dynamic response of structural members subjected to blast loads must be conducted. Furthermore, structural dynamic analysis has to be performed considering relationships between the natural frequency of structural members and time duration of the explosion loading because the explosion pressure tends to increase and dissipate within an extremely short time. In this paper, the numerical model based on time history data were proposed considering the negative phase pressure in which considerable negative phase pressures were observed in CFD analyses of gas explosions. The undamped single degree of freedom(SDOF) model was used to characterize the dynamic response under the blast loading. A blast wall of FPSO topside was considered as an essential structure in which the wall prevents explosion pressures from the process area to utility and working areas. From linear/nonlinear transient analyses using LS-DYNA, it was observed that dynamic responses of structures were influenced by significantly the negative time duration.

Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps

  • Sun, Xiao;Tao, Junliang;Li, Jiale;Dai, Qingli;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.311-328
    • /
    • 2017
  • The characteristics of boundary layers have significant effects on the aerodynamic forces and vibration of the wind turbine blade. The incorporation of active trailing edge flaps (ATEF) into wind turbine blades has been proven as an effective control approach for alleviation of load and vibration. This paper is aimed at investigating the effects of external trailing edge flaps on the flow pattern and velocity distribution within a boundary layer of a NREL 5MW reference wind turbine, as well as designing a new type of velocity sensors for future validation measurements. An aeroelastic-aerodynamic simulation with FAST-AeroDyn code was conducted on the entire wind turbine structure and the modifications were made on turbine blade sections with ATEF. The results of aeroelastic-aerodynamic simulations were combined with the results of two-dimensional computational fluid dynamic simulations. From these, the velocity profile of the boundary layer as well as the thickness variation with time under the influence of a simplified load case was calculated for four different blade-flap combinations (without flap, with $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$ flap). In conjunction with the computational modeling of the characteristics of boundary layers, a bio-inspired hair flow sensor was designed for sensing the boundary flow field surrounding the turbine blades, which ultimately aims to provide real time data to design the control scheme of the flap structure. The sensor element design and performance were analyzed using both theoretical model and finite element method. A prototype sensor element with desired bio-mimicry responses was fabricated and validated, which will be further refined for integration with the turbine blade structures.

Study on Durability of Wood Deck according to Species (수종별 목재 데크재의 내구성에 관한 연구)

  • Kim, Kyoung Jung;Lee, Won Jae;Choi, Chul;Kim, Hee Jin;Kang, Seog Goo
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.2
    • /
    • pp.111-117
    • /
    • 2017
  • Recently, as people's interest in wood has increased, the use of wood as household and landscape decking materials has increased. As the deck material, imported wood such as synthetic wood, Ipe, and Malas was used in addition to the existing preserved wood, but recently deck use has been activated as part of the activation of domestic materials. As an important quality factor in the selection of such decking materials, various durability along with weatherability for long - term use is required for maintenance. Generally used tropical hardwoods have excellent weatherability and durability without additional preservative treatment. However, the domestic larch is a wood species with a higher specific gravity and durability than ordinary conifers. However, it has not yet been used as a deck material due to lack of comparative studies on its characteristics. Therefore, hardness and durability of wood were measured using six specimens of Ipe, Massaranduba, Malas, Douglas-fir, Larch and Torrefied-Larch. Density Profile was used to measure the density, and Brinell hardness test and resistance test against momentary impact were carried out for the test of resistance to static load. Also, The hardness and durability of wood were measured by castor test with resistance test against dynamic load, as well as, nail down test by experiment on surface hardness and durability. As a result of the experiment, the hardness was increased in proportion to the density, and it was confirmed that the imported lumber was harder and durable than the domestic larch.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.