• Title/Summary/Keyword: Dynamic load factor

Search Result 386, Processing Time 0.035 seconds

A Three-Phase Four-Wire DSTATCOM for Power Quality Improvement

  • Singh, Bhim;Jayaprakash, P.;Kothari, D.P.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.259-267
    • /
    • 2008
  • Power quality improvement in a three-phase four-wire system is achieved using a new topology of DSTATCOM (distribution static compensator) consisting of a star/delta transformer with a tertiary winding and a three-leg VSC (voltage source converter). This new topology of DSTATCOM is proposed for power factor correction or voltage regulation along with harmonic elimination, load balancing and neutral current compensation. A tertiary winding is introduced in each phase for a delta connected secondary in addition to the star-star windings and this delta connected winding is responsible for neutral current compensation. The dynamic performance of the proposed DSTATCOM system is demonstrated using MATLAB with its Simulink and Power System Blockset (PSB) toolboxes under varying loads. The capacitor supported DC bus of the DSTATCOM is regulated to the reference voltage under varying loads.

Intermittent Heating and Cooling Load Calculation Method -Comparing with ISO 13790

  • Lee, Sang-Hoon
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • College of Architecture, Georgia Institute of Technology, Atlanta, GA, US Abstract The intermittent heating and cooling energy need calculation of the ISO 13790 monthly method was examined. The current ISO 13790 method applies a reduction factor to the continuous heating and cooling need calculation result to derive the intermittent heating and cooling for each month. This paper proposes a method for the intermittent energy need calculation based on the internal mean temperature calculation. The internal temperature calculation procedure was introduced considering the heat-balance taking into account of heat gain, heat loss, and thermal inertia for reduced heating and cooling period. Then, the calculated internal mean temperature was used for the intermittent heating and cooling energy need calculation. The calculation results from the proposed method were compared to the current ISO 13790 method and validated with a dynamic simulation using EnergyPlus. The study indicates that the intermittent heating and cooling energy need calculation method using the proposed model improves transparency of the current ISO 13790 method and draws more rational outcomes in the monthly heating and cooling energy need calculation.

Longitudinal Displacement Analysis for Express Railway PSC Box-Girder Bridges (고속철도 PSC 박스거더의 종방향 신축변위 장기거동분석)

  • Yim Myoung-Jae;Choi Il-Yoon;Lee Jun S.;Lee Hyun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1102-1107
    • /
    • 2004
  • High-speed railway bridges subject to effect of statical loads by temperature change as well as dynamic loads by interaction between vehicle load which run specially fast and behavior of bridges, If suitable longitudinal expansion by temperature change of bridge does not happened, it can cause unhealthy condition for the parts of bridges as well as can generate addition stress to bridges, For these reason, Analysis and Estimation of data about behavior of bridges occupies important factor in that estimate the remaining life of bridges and select the maintenance, repair and retrofit. In this paper, Analysis for the long-term behavior of bridges using Longitudinal displacement and Temperature data that is actuality measured data to the bridges of Seoul-Busan high speed railroad test section has been made.

  • PDF

Modeling, simulation and control strategy for the fuel cell process (모델링 및 전산모사를 통한 연료전지공정의 제어전략에 관한 연구)

  • 이상범;이익형;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1012-1015
    • /
    • 1996
  • This study focuses on the optimal operation and control strategy of the fuel cell process. The control objective of the Phosphoric Acid Fuel Cell (PAFC) is established and dynamic modeling equations of the entire fuel cell process are formulated as discrete-time type. On-line optimal control of the MIMO system employs the direct decomposition-coordination method. The objective function is modified as the tracking form to enhance the response capability to the load change. The weight factor matrices Q,R, which are design parameters, are readjusted. This control system is compared with LQI method and the results show that the suggested method is better than the traditional method in pressure difference control.

  • PDF

A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구)

  • Lee, D.C.;Kang, D.S.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.359-368
    • /
    • 2006
  • The trend on marine diesel engine productions and refinements has led to a higher mean effective pressure and thermal efficiency. These resulted in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. In view of this. the crankshaft should be able to withstand the dynamic stresses caused by load variations. Different factors including size, material and stress concentration factors should also be considered to ensure the reliability of the shafting system. As such, crankshaft must be designed and compacted within its fatigue strength. In this paper, the strength analysis of crankshaft Is carried out by: simplified method recommended by IACS(International Association Classification Societies) M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are then compared.

INNOVATIVE INDUCTION-HEATED HIGH-TEMPERATURE STEAMER USING VOLTAGE-FED HIGH-FREQUENCY RESONANT INVERTER

  • Guo, Bin;Nakamizo, Tetsuo;Nishida, Katsumi;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.586-591
    • /
    • 1998
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction-based fluid heating appliance using voltage-fed series capacitor-compensated load resonant high-frequency IGBT inverter with a phase-shifted PWM and a power factor correction schemes. Its operating characteristics in steady-state and dynamic state are illustrated including unique features and evaluated on the basis of its computer simulation and experimental results of 10kw breadboard appliance developed for hot water producer and superheated steamer.

  • PDF

Single-Phase 3-level PWM Inverter for Harmonics Reduction (고조파 저감을 위한 단상 3-레벨 PWM 인버터)

  • Gang, Pil-Sun;Park, Seong-Jun;Kim, Cheol-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.125-132
    • /
    • 2002
  • This paper presents a single-phase 3-level PWM inverter to alleviate the harmonic components of output voltage and current under the conditions of identical supply DC voltage and switching frequency to the conventional inverter. Operational principles and analysis are performed, and the switching functions are derived. Deadbeat controller is also designed and implemented for the inverter to keep the output voltage being sinusoidal and to have the high dynamic performances even in the cases of load variations and the partial magnetization of filter inductor. The validity of proposed inverter is proved from the simulated and experimented results.

Lifetime prediction of the engine mount about the environment temperature variation (환경 온도변화에 대한 자동차용 엔진마운트의 수명 예측)

  • Kim, Hyung Min;Wei, Shin Hwan;Yoon, Sin Il;Shin, Ik Jae;Kim, Gyu Ro
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.65-76
    • /
    • 2013
  • In order to assess the reliability of engine mount for a vehicles, life test model and procedure are developed. By using this method, failure mechanism and life distribution are analyzed. The main results are as follows; i) the main failure mechanism is degradation failure of engine mount rubber by fatigue failure at dynamic load. ii) temperature is a second factor to affect a failure. iii) the life distribution of engine mount module is fitted well to Weibull life distribution and the shape parameter is 18.4 and the accelerated life model of that is fitted well to Arrhenius model.

Design Loads on Railway Substructure: Sensitivity Analysis of the Influence of the Fastening Stiffness

  • Giannakos, Konstantinos
    • International Journal of Railway
    • /
    • v.7 no.2
    • /
    • pp.46-56
    • /
    • 2014
  • The superstructure of the railway track undertakes the forces that develop during train passage and distributes them towards its seating. The track panel plays a key role in terms of load distribution, while at the same time it maintains the geometrical distance between the rails. The substructure and ballast undergo residual deformations under high stresses that contribute to the deterioration of the so-called geometry of the track. The track stiffness is the primary contributing factor to the amount of the stresses that develop on the substructure and is directly influenced by the fastening resilience. Four methods from the international literature are used in this paper to calculate the loads and stresses on the track substructure and the results are compared and discussed. A parametric investigation of the stresses that develop on the substructure of different types of railway tracks (i.e. balastless vs ballasted) is performed and the results are presented as a function of the total static track stiffness.

The Optimal Compensation Gain Algorithm Using Variable Step for Buck-type Active Power Decoupling Circuits (벅-타입 능동 전력 디커플링을 위한 가변 스텝을 적용한 최적 보상 이득 알고리즘)

  • Baek, Ki-Ho;Kim, Seung-Gwon;Park, Sung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • This work proposes a simple control method of a buck-type active power decoupling circuit that can minimize the ripple values in the dc link voltage. The proposed method utilizes a simplified duty calculation method and an optimal compensation gain tracking algorithm with variable-step approach. Thus, the dc link voltage ripple can be effectively reduced through the proposed method along with rapid response in tracking the optimum compensation gain. Moreover, the proposed method has better dynamic responses in the load fluctuation or abnormal situation. MATLAB/Simulink simulation and hardware-in-the-loop-simulation(HILS)-based experimental results are presented to validate the effectiveness of the proposed control method.