• Title/Summary/Keyword: Dynamic imaging

Search Result 495, Processing Time 0.023 seconds

Linearized Methods for Quantitative Analysis and Parametric Mapping of Brain PET (뇌 PET 영상 정량화 및 파라메터영상 구성을 위한 선형분석기법)

  • Kim, Su-Jin;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.78-84
    • /
    • 2007
  • Quantitative analysis of dynamic brain PET data using a tracer kinetic modeling has played important roles in the investigation of functional and molecular basis of various brain diseases. Parametric imaging of the kinetic parameters (voxel-wise representation of the estimated parameters) has several advantages over the conventional approaches using region of interest (ROI). Therefore, several strategies have been suggested to generate the parametric images with a minimal bias and variability in the parameter estimation. In this paper, we will review the several approaches for parametric imaging with linearized methods which include graphical analysis and mulilinear regression analysis.

Intravital Laser-scanning Two-photon and Confocal Microscopy for Biomedical Research

  • Moon, Jieun;Kim, Pilhan
    • Medical Lasers
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Intravital microscopy is a high-resolution imaging technique based on laser-scanning two-photon and confocal microscopy, which allows dynamic 3D cellular-level imaging of various biological processes in a living animal in vivo. This unique capability allows biomedical researchers to directly verify a hypothesis in a natural in vivo microenvironment at the cellular level in a physiological setting. During the last decade, intravital microscopy has become an indispensable technique in several fields of biomedical sciences such as molecular and cell biology, immunology, neuroscience, developmental, and tumor biology. The most distinct advantage of intravital microscopy is its capability to provide a longitudinal view of disease progression at the cellular-level with repeated intravital imaging of a single animal over time by saving the images after each session.

Development of Event-based Object Tracking System (이벤트 기반 물체 추적 시스템 개발)

  • Kim, Sang-Jun;Lee, Hyunkyung;Lee, Seung Ah;Kim, Dae-Yeon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.179-181
    • /
    • 2022
  • 동적 비전 센서(Dynamic Vision Sensor)라고도 알려진 이벤트 카메라는 생체에서 영감을 받은 새로운 시각 센서이다. 고정된 속도로 이미지를 생성하는 기존 카메라와 달리 이벤트 기반 카메라의 픽셀은 독립적이고 비동기적으로 작동한다. 기존 프레임 기반 카메라보다 이벤트 기반 카메라가 움직임을 포착하는데 더 적합하며 모션 블러(Motion Blur)가 없고 시간 해상도가 높다는 이점을 통해 고속카메라로 활용할 수 있다. 본 논문은 이벤트 카메라의 높은 시간 해상도와 동적 범위, 낮은 지연시간, 전력 소비량의 이점을 활용하여 움직이는 물체를 모션 블러 없이 포착하는 이벤트 기반 물체 추적 시스템을 제안한다. 실험을 통해 전체 영상을 포착하는 기존 프레임 기반 카메라에 비해 밝기 변화에 따른 동적 변화만을 추적하는 이벤트 기반 카메라는 모션 블러가 없다는 점을 검증하였다.

  • PDF

Discussions on the Reconstruction of Visual Illusion in Dynamic Images - Take of Paul Sermon as an example (다이나믹 이미지 예술 중 착시의 재구성에 관한 연구 - 폴 셔먼의 을 중심으로)

  • GAO, XIAOYA;Paik, Joonki
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.189-201
    • /
    • 2021
  • The art of dynamic images has experienced three development stages, including experimental films, recording art, and new media image. By introducing all kinds of new materials, new media to the art, and the art of dynamic images has created more freedom for art creation. With the development of digital information technology, dynamic image works have put forward an increasingly high requirement of visual art. The combination of dynamic images and visual illusion can give rise to different forms and expression methods, thus endowing artworks with more vigor. This paper provides an overview by sorting out the lineage and development of dynamic images in the background, as well as understanding the application and performance of contrasted visual illusion. Based on the understanding of the characteristics of visual illusion, we discuss the new characteristics of applying the theory of visual illusion to new media dynamic images in relation to the technical approach of dynamic images. Through the analysis of specific works of Telematic Vision, we search for its reasonable combination and find the appropriate technical means of implementation. We discuss how to use digital multimedia technology and spatial optical illusion to make the design more novel and impactful, and consider how the combination of digital dynamic image technology and visual illusion should be interpreted and applied.

The Latest Trend of Dynamic MR Defecography for the Chronic Constipation Patient (만성 기능성 변비 환자에서 동적 MR Defecography의 최신동향)

  • Yoon, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.27 no.4
    • /
    • pp.17-21
    • /
    • 2004
  • With advancement of the medical imaging technology, the dynamic pelvic MRI (magnetic resonance imaging) has been introduced and used for dynamic MR defecography to improved diagnosis of the patients. At the early stage of its use, it was mostly used to diagnose enterocele or cystocele, then its use was extended to diagnose the organ prolapse and other dysfunctional pelvis organs. There now have been many reports of other diseases such as the functional constipation and others. This paper introduces the pelvis MRI and the dynamic MR defecography and reports the future trend in their clinical applications. Until recently, the studies with pelvic MRI were mostly focused on observing the movement of the pelvis in the supine position. Yang and 26 others reported good result in observing the patients with the pelvic organ prolapse by using the pubococcygeal line as the anatomical index. Using the fast gradient recalled acquisition (fast GRASS), they compared cystocoele, genitourinary prolapse, enterocoele and rectocoele with the control group. Kruyt et al. observed the posterior compartment and reported that MRI was more helpful than the fluoroscopy. Healy et al. applied the dynamic MRI test on the patients with constipation or incontinence as well as the control group without those symptoms. Since then, MRI technology has further advance by Lienemann, who was able to attain the more detailed images using the fast T2 weighted turbo spin echo technology, and others. If its limitation in diagnosing intussusception and the like, since the observation can be made only from the supine position, can be overcome with open MR or others, it is envisages that the method can eventually replace the radiological defecography.

  • PDF

An Adaptive Tone Reproduction for High Dynamic Range Image

  • Lee, Joo-Hyun;Jeon, Gwang-Gil;Jeon, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.428-437
    • /
    • 2009
  • A high dynamic range (HDR) image can represent real world scenes that have a wide range of luminance intensity. However, compared with the range of real world luminance, conventional display devices have a low dynamic range (LDR). To display HDR images onto conventional displayable devices such as monitors and printers, we propose the logarithmic based global reproduction algorithm that considers the features of the image using reproduction parameters. Based on the characteristics of the image, we first modify the input luminance values for reproducing perceptually tuned images and then obtain the displayable output values directly. The experimental results show that the proposed algorithm achieves good subjective results while preserving details of the image; furthermore, the proposed algorithm has a fast, simple and practical structure for implementation.

Noise Reduction of HDR Detail Layer Using a Kalman Filter Adapted to Local Image Activity (국부 영상 활동도에 적응적인 칼만 필터를 이용한 HDR 세부 영상 레이어의 잡음 제거)

  • Kim, Tae-Kyu;Song, Inho;Lee, Sung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 2019
  • In High Dynamic Range (HDR) image processing, tone mapping is the process to compress an input image into a Low Dynamic Range (LDR) image. In most cases, the reason that detail preservation is prior to take over tone mapping is that the dynamic range is significantly different between input and output images. In the case of iCAM06, details are separated by using a bilateral filter, however, it causes noise amplification at the dim surround region. Thus, we suggest that the detail signal, which is separated from the bilateral filter, is combined with the base signal after an adaptive Kalman filter is applied according to the local standard deviation. We confirmed that the proposed method enhances the HDR images quality by checking the noise reduction in a dim surround region.

Improved Algorithm of Sectional Tone Mapping for HDR Images (HDR 이미지를 위한 단면 톤 매핑 개선 알고리즘 구현)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.137-140
    • /
    • 2021
  • High dynamic range (HDR) technology has been drawing attention in the field of imaging and consumer entertainment. As tools for capturing and creating HDR contents, encoding, and transmission evolve to support HDR formats, various display capabilities are being developed and increased. Hence, there is need for remapping native HDR imagery for display on lower quality legacy standard dynamic range (SDR) displays. This operation is referred to as tone mapping. In this paper, we present a sectional tone mapping method by Lenzen, and expand upon a tone mapping approach to improve temporal stability while maintaining picture quality. Compared to the existing block-based sectional tone mapping, our method uses the edge awareness-based tone mapping. We estimate the performance of the objective metric on temporal flickering. The experimental result shows that the algorithm maintains a smoother relationship between the output luminance values, and this reveals success in reducing halos and improving temporal stability with adopted edge aware filtering.

Signal Processing in Medical Ultrasound B-mode Imaging (의료용 초음파 B-모드 영상을 위한 신호처리)

  • Song, Tai-Kyong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.521-537
    • /
    • 2000
  • Ultrasonic imaging is the most widely used modality among modern imaging device for medical diagnosis and the system performance has been improved dramatically since early 90's due to the rapid advances in DSP performance and VLSI technology that made it possible to employ more sophisticated algorithms. This paper describes "main stream" digital signal processing functions along with the associated implementation considerations in modern medical ultrasound imaging systems. Topics covered include signal processing methods for resolution improvement, ultrasound imaging system architectures, roles and necessity of the applications of DSP and VLSI technology in the development of the medical ultrasound imaging systems, and array signal processing techniques for ultrasound focusing.

  • PDF

Analysis of Synthetic Aperture Techniques for Ultrasound Linear - scan Imaging (초음파 선형주사 영상을 위한 합성구경 기법의 해석)

  • 송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.503-513
    • /
    • 1999
  • A general expression for the beam patterns of various synthetic aperture(SA) techniques was derived based on a unified SA model. This model was used to analyze and compare the performance of existing SA methods. Based on the theoretical studies, we propose a new synthetic aperture technique that is best suitable for the linear-scan imaging. The proposed method enables dynamic tow-way focusing in real imaging so that the B-mode image resolution can be greatly improved. Compared to the conventional focusing technique, the focused beam pattern by the proposed shows the mainlobe width reduced by half and comparable sidelobe levels. Computer simulation results demonstrated the validity of the theoretical analysis and the proposed SA method.

  • PDF