• 제목/요약/키워드: Dynamic free surface condition

검색결과 52건 처리시간 0.027초

3차원 공간에서 바닥의 움직임에 의한 규칙파의 생성을 모의할 수 있는 선형 스펙트럼법 (Linear Spectral Method for Simulating the Generation of Regular Waves by a Moving Bottom in a 3-dimensional Space)

  • 정재상;이창훈
    • 한국해안·해양공학회논문집
    • /
    • 제36권2호
    • /
    • pp.70-79
    • /
    • 2024
  • 본 연구에서는 3차원 공간에서 바닥의 움직임에 따른 선형파의 생성을 모의할 수 있는 스펙트럼 법을 소개한다. 지배방정식은 선형의 동역학적 및 운동학적 자유수면 경계조건이며, 두 식은 Fourier 공간에서 해석된다. 해석된 속도포텐셜 및 자유수면변위는 연속방정식과 운동학적 바닥경계조건을 항상 만족해야 한다. 수치해석에서 시간 적분은 4차 Runge-Kutta 법을 이용하여 해석하였다. Fourier 공간에서 해석한 결과는 Fourier 역변환을 통해 실제 공간에서의 속도포텐셜과 자유수면변위로 표현된다. 본 수치모델을 이용하여 다양한 형상의 바닥이 규칙적으로 움직이는 경우 생성되는 규칙파에 대해 모의하였다. 또한 바닥의 움직임을 이용하여 비스듬히 전파하는 규칙파의 생성도 모의하였다. 수치모델의 결과는 해석해와 비교하였으며, 거의 일치하는 결과를 보였다.

An Analytical Solution for Regular Progressive Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권3호
    • /
    • pp.157-167
    • /
    • 2015
  • In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also presented with closed form. In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean's stream function theory is based on the method. In this paper, power series method was considered. The power series method can be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By using the set of equations, the nonlinear wave problem has been solved in this paper.

Influence of surface irregularity on dynamic response induced due to a moving load on functionally graded piezoelectric material substrate

  • Singh, Abhishek K.;Negi, Anil;Koley, Siddhartha
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.31-44
    • /
    • 2019
  • The present study investigate the compressive stress, shear stress, tensile stress, vertical electrical displacement and horizontal electrical displacement induced due to a load moving with uniform velocity on the free rough surface of an irregular transversely isotropic functionally graded piezoelectric material (FGPM) substrate. The closed form expressions ofsaid induced stresses and electrical displacements for both electrically open condition and electrically short condition have been deduced. The influence of various affecting parameters viz. maximum depth of irregularity, irregularity factor, parameter of functionally gradedness, frictional coefficient of the rough upper surface, piezoelectricity/dielectricity on said induced stresses and electrical displacements have been examined through numerical computation and graphical illustration for both electrically open and short conditions. The comparative analysis on the influence of electrically open and short conditions as well as presence and absence of piezoelectricity on the induced stresses and induced electrical displacements due to a moving load serve as the salient features of the present study. Moreover, some important peculiarities have also been traced out by means of graphs.

선삭에서 절삭계의 동적안정성 향상에 관한 연구 (Dynamic Stability of Cutting System in Lathe Turning)

  • 정준기;이형식
    • 한국정밀공학회지
    • /
    • 제1권2호
    • /
    • pp.33-40
    • /
    • 1984
  • Chatter is a relative vibration between workpiece and tool in machining of metals, and is an important limiting factor of production rate and surface quality, and also reduces the life of machine-tool itself and its tool. In this study, in order to suppress the machining chatter, the spring and the rubber damper are adopted to the tool post of a lathe. The results obtained in this experimental study are summarized as follows. 1. The spring and the damper employed in the tool post for the suppression of chatter increase the maximum chatter-free depth of cut and optimum values found for spring constant and compressive strain are 95kg/mm, 0.1954 respectively. 2. On the optimum condition resulting in this experimental study, the modified tool post increased 6 times in the maximum chatter-free depth of cut as compared with the conventional tool post.

  • PDF

HYDROELASTIC VIBRATION ANALYSIS OF TWO FLEXIBLE RECTANGULAR PLATES PARTIALLY COUPLED WITH A LIQUID

  • Jeong, Kyeong-Hoon;Kim, Jong-Wook
    • Nuclear Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.335-346
    • /
    • 2009
  • This paper deals with a hydroelastic vibration analysis of two rectangular plates partially coupled with a liquid, which is bounded by two plates and two rigid side walls. The wet displacement of each plate is assumed to be a combination of the modal functions of a dry uniform beam with a clamped boundary condition. As the liquid is assumed to be an ideal liquid, the displacement potential satisfying the Laplace equation is determined so that the liquid boundary conditions can meet the requirements at the rigid surfaces and the free liquid surface. The wet dynamic modal functions of each plate are expanded by using the finite Fourier transform to obtain an appropriate form of the compatibility requirement along the contacting surfaces between the plates and the liquid. The liquid-coupled natural frequencies of the plates are derived by using the Rayleigh-Ritz method. Finite element analyses using commercial software are carried out to verify the proposed theory. It is observed that the theoretical method agrees excellently with the three-dimensional finite element analyses results. The effects of the liquid depth and the liquid thickness on the normalized natural frequencies are investigated to identify the dynamic characteristics of the liquid coupled system.

A Fourier Series Approximation for Deep-water Waves

  • Shin, JangRyong
    • 한국해양공학회지
    • /
    • 제36권2호
    • /
    • pp.101-107
    • /
    • 2022
  • Dean (1965) proposed the use of the root mean square error (RMSE) in the dynamic free surface boundary condition (DFSBC) and kinematic free-surface boundary condition (KFSBC) as an error evaluation criterion for wave theories. There are well known wave theories with RMSE more than 1%, such as Airy theory, Stokes theory, Dean's stream function theory, Fenton's theory, and trochodial theory for deep-water waves. However, none of them can be applied for deep-water breaking waves. The purpose of this study is to provide a closed-form solution for deep-water waves with RMSE less than 1% even for breaking waves. This study is based on a previous study (Shin, 2016), and all flow fields were simplified for deep-water waves. For a closed-form solution, all Fourier series coefficients and all related parameters are presented with Newton's polynomials, which were determined by curve fitting data (Shin, 2016). For verification, a wave in Miche's limit was calculated, and, the profiles, velocities, and the accelerations were compared with those of 5th-order Stokes theory. The results give greater velocities and acceleration than 5th-order Stokes theory, and the wavelength depends on the wave height. The results satisfy the Laplace equation, bottom boundary condition (BBC), and KFSBC, while Stokes theory satisfies only the Laplace equation and BBC. RMSE in DFSBC less than 7.25×10-2% was obtained. The series order of the proposed method is three, but the series order of 5th-order Stokes theory is five. Nevertheless, this study provides less RMSE than 5th-order Stokes theory. As a result, the method is suitable for offshore structural design.

3차원 조파수조에서 바닥 조파장치에 의해 재현된 규칙파에 대한 해석적 연구 (An Analytical Study of Regular Waves Generated by Bottom Wave Makers in a 3-Dimensional Wave Basin)

  • 정재상;이창훈
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.93-99
    • /
    • 2022
  • 본 연구에서는 바닥 조파장치가 설치된 3차원 조파수조에서 재현된 규칙파에 대한 해석해를 유도하였다. 바닥 조파장치로 삼각형 형상, 사각형 형상 및 두 형상이 복합된 형상이 적용되었다. 선형파 이론과 움직이는 바닥에 대한 경계조건, 동역학적 및 운동학적 자유수면 경계조건을 이용하여 조파수조 내의 3차원 속도포텐셜을 유도하였다. 그리고, 이로부터 각 방향 성분의 유속과 자유수면변위에 대한 해석해를 구하였다. 유도된 해석해는 바닥 조파장치가 설치된 조파수조에서 규칙파의 전파 특성에 대해 물리적으로 타당한 결과를 보였다. 바닥 조파장치가 snake 형태로 움직이는 경우의 비스듬히 전파하는 파랑의 조파에 대해서도 해석해를 유도하였으며, 해석 결과는 이론적으로 예측한 결과와 일치하였다.

제501오룡호 전복사고의 역학적 요인 분석 (Analysis the dynamic factors on the capsize of O-Ryong 501)

  • 김용직;강일권;함상준;박치완
    • 수산해양기술연구
    • /
    • 제51권4호
    • /
    • pp.520-526
    • /
    • 2015
  • A tragic disaster happened by capsizing O-Ryong 501 trawler at Western Bering Sea in 1st, Dec. 2014. The disaster was caused by the severe weather and the long deferred escape from the storm in fully developed high sea. Lots of sea water from poop deck rushed into the fish ponder with fishes all together after hauling net and then remove the fishes from codend. The vessel became to incline to the one side caused by the weight and the free surface effect of flood sea waters and fishes at initial stage. In spite of crews all effort to discharge the waters, but the work was not achieved successfully. For the worse thing, the order of abandon ship was issued too late. After all, the ship capsized and sank, then almost crews became to the victims of the casualty including captain. In this paper, author carried out restrictively the calculation of dynamic factors influenced on the disaster including the weather condition and effects of the flood sea waters, and found out that the most important causes of the disaster were the decrease of stabilities, GM was decreased from 0.9m to 0.08 m, and the high waves which led to the vessel disaster.

전자처리 스페클 패턴 간섭법을 이용한 복합재료의 진동 특성 해석에 관한 연구 (A Study on the Vibration Characteristics Analysis of Composite Materials by Using Electronic Speckle PatternInterferometry Method)

  • 김형택;정현철;양승필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.388-392
    • /
    • 1995
  • The Electronic Speckle Pattern Interferometry(ESPI) has been applied to many technical problems such as deformation and displacement measurement, strain visualization and surface roughness monitoring. Composite materials have various complicated characteristics depending on the ply materials,ply orientations,ply stacking sequences and boundary conditions. Therefore, it is difficult to analyze composite material. For efficient use of composit materials in engineering applications, the dynamic behavior such as, natural frequencies and modal patterns should be identified. This studying presents FEM results for the free vibration of symmetrically laminated composite as [30/-30/90] $_{s}$. The natural frequencies of laminated composite rectangular plates having the boundary condition(:2-edge clamped) are experimentally obtained. In order to demonstrate the validity of the experiment,FEM analysis using ANSYS was performed and natural frequencies experimentally obtained is compared with calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.t.

  • PDF

Numerical investigation of floating breakwater movement using SPH method

  • Najafi-Jilani, A.;Rezaie-Mazyak, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권2호
    • /
    • pp.122-125
    • /
    • 2011
  • In this work, the movement pattern of a floating breakwater is numerically analyzed using Smoothed Particle Hydrodynamic (SPH) method as a Lagrangian scheme. At the seaside, the regular incident waves with varying height and period were considered as the dynamic free surface boundary conditions. The smooth and impermeable beach slope was defined as the bottom boundary condition. The effects of various boundary conditions such as incident wave characteristics, beach slope, and water depth on the movement of the floating body were studied. The numerical results are in good agreement with the available experimental data in the literature The results of the movement of the floating body were used to determine the transmitted wave height at the corresponding boundary conditions.