• 제목/요약/키워드: Dynamic expansion

검색결과 499건 처리시간 0.022초

기호 비선형 방정식의 해석적 선형화 (Analytic Linearization of Symbolic Nonlinear Equations)

  • 송성재;문홍기
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.145-151
    • /
    • 1995
  • The first-order Taylor series expansion can be evaluated analytically from the formulated symbolic nonlinear dynamic equations. A closed-form linear dynamic euation is derived about a nominal trajectory. The state space representation of the linearized dynamics can be derived easily from the closed-form linear dynamic equations. But manual symbolic expansion of dynamic equations and linearization is tedious, time-consuming and error-prone. So it is desirable to manipulate the procedures using a computer. In this paper, the analytic linearization is performed using the symbolic language MATHEMATICA. Two examples are given to illustrate the approach anbd to compare nonlinear model with linear model.

  • PDF

Characteristics of Lightweight Concrete and Their Application in Structures

  • 성찬영
    • 한국농공학회지
    • /
    • 제34권E호
    • /
    • pp.60-69
    • /
    • 1992
  • The research significance of the paper is to identify the major properties of synthetic lightweight concrete that are affected by ASR expansion and to determine the extent and magnitude of the loss in these properties. Emphasis is also given to the use of non-destructive testing techniques ; Such as dynamic modulus of elasticity and ultrasonic pulse velocity, to examine whether these methods could be used to identify the initiation of expansion and the internal structural damage caused by ASR.

  • PDF

양생조건이 경량골재 콘크리트의 ASR에 미치는 영향 (Effect of Curing Conditions on the ASR of Lightweight Aggregate Concrete)

  • 성찬용;김성완;민정기
    • 한국농공학회지
    • /
    • 제35권4호
    • /
    • pp.38-46
    • /
    • 1993
  • This study is to analyze effect of exposure environment and mode of ASR on the engineering properties of synthetic lightweight aggregate concrete, such as dynamic modulus of elasticity and ultrasonic pulse velocity. The results of this study are summarized as foflows ; 1. The expansion rate of each exposure environment in 380$^{\circ}$C and NaCI 4% solution was shown higher than in 20$^{\circ}$C and normal water. The expansion rate of each exposure mode was largely shown in order of fjill immersion, wetting/drying, half immersion. 2. The dynamic modulus of elasticty and ultrasonic pulse velocity of each exposure environment in 38$^{\circ}$C and NaCl 4% solution was shown less than in 20$^{\circ}$C and normal water. The dynamic modulus of elasticity and ultrasonic pulse velocity of each exposure mode was shown smaller in order of full immersion, wetting/drying, half imersion.3. The relation between dynamic modulus of elasticity and ultrasonic pulse velocity was highly significant. The dynamic modulus of elasticity was increased with increase of ultrasonic pulse velocity. The decreasing rate of the dynamic modulus of elasticity was shown 2.1~3.4 times higher than the ultrasonic pulse velocity at each age, exposure environment and mode, respectively. 4. The expansion of each exposure environment and mode was increased with increase of curing age. The dynamic modulus of elasticity and ultrasonic pulse velocity of those concrete was increased with increase of curing age. At the curing age 28 days, the highest properties was showed at each type concrete, it was gradually decreased with increase of curing age. Specially, at the curing age 98 days of full immersion, the rate of expansion of type D was shown 3.95 times higher than the type A. But the dynamic modulus of elasticity and ultrasonic pulse velocity was decreased 17% and 8.3%.

  • PDF

Dynamic numerical analysis of single-support modular bridge expansion joints

  • Yuan, Xinzhe;Li, Ruiqi;Wang, Jian'guo;Yuan, Wancheng
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2016
  • Severe fatigue and noise problems of modular bridge expansion joints (MBEJs) are often induced by vehicle loads. However, the dynamic characteristics of single-support MBEJs have yet to be further investigated. To better understand the vibration mechanism of single-support MBEJs under vehicle loads, a 3D finite element model of single-support MBEJ with five center beams is built. Successive vehicle loads are given out and the vertical dynamic responses of each center beams are analyzed under the successive loads. Dynamic amplification factors (DAFs) are also calculated along with increasing vehicle velocities from 20 km/h to 120 km/h with an interval 20 km/h. The research reveals the vibration mechanism of the single-support MBEJs considering coupled center beam resonance, which shows that dynamic responses of a given center beam will be influenced by the neighboring center beams due to their rebound after the vehicle wheels depart. Maximal DAF 1.5 appears at 120 km/h on the second center beam. The research results can be utilized for reference in the design, operation and maintenance of single-support MBEJs.

B-spline 곡선을 power 기저형태의 구간별 다항식으로 바꾸는 Direct Expansion 알고리듬 (A Direct Expansion Algorithm for Transforming B-spline Curve into a Piecewise Polynomial Curve in a Power Form.)

  • 김덕수;류중현;이현찬;신하용;장태범
    • 한국CDE학회논문집
    • /
    • 제5권3호
    • /
    • pp.276-284
    • /
    • 2000
  • Usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in a power form is done by either a knot refinement followed by basis conversions or applying a Taylor expansion on the B-spline curve for each knot span. Presented in this paper is a new algorithm, called a direct expansion algorithm, for the problem. The algorithm first locates the coefficients of all the linear terms that make up the basis functions in a knot span, and then the algorithm directly obtains the power form representation of basis functions by expanding the summation of products of appropriate linear terms. Then, a polynomial segment of a knot span can be easily obtained by the summation of products of the basis functions within the knot span with corresponding control points. Repeating this operation for each knot span, all of the polynomials of the B-spline curve can be transformed into a power form. The algorithm has been applied to both static and dynamic curves. It turns out that the proposed algorithm outperforms the existing algorithms for the conversion for both types of curves. Especially, the proposed algorithm shows significantly fast performance for the dynamic curves.

  • PDF

Cyclic Load Testing of Concrete Expansion Anchors

  • Gary L. Barnes;Lee, Sang-Myung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(4)
    • /
    • pp.404-404
    • /
    • 1996
  • In order to ensure a concrete expansion anchor is suitable for a given application, the load resistance behavior of the anchor must be known. ASTM E488 provides a standard method of testing expansion anchors for static and dynamic loads. Due to the many types of anchors available commercially and the large variability of applications, the ASTM does not delineate all details or requirements necessary to comprehensively determine the dynamic load behavior of concrete expansion anchors. A test program is presented in this paper which was developed and implemented to determine the cyclic load behavior of wedge-type concrete expansion anchors. Test results are also presented along with a discussion of the behavior of anchors, and their suitability for use.

  • PDF

Measurement Uncertainties for Vacuum Standards from a Low to an Ultra-high Vacuum

  • Hong, S.S.;Shin, Y.H.;Lim, J.Y.
    • Applied Science and Convergence Technology
    • /
    • 제23권3호
    • /
    • pp.103-112
    • /
    • 2014
  • The Korea Research Institute of Standards and Science (KRISS) has three major vacuum systems: an ultrasonic interferometer manometer (UIM; Section II, Figs. 1 and 2) for a low vacuum, a static expansion system (SES; Section III, Figs. 3 and 4) for a medium vacuum, and an orifice-type dynamic expansion system (DES, Section IV, Figs. 5 and 6) for high and ultra-high vacuum systems. For each system, explicit measurement model equations with multiple variables are given. According to ISO standards, all of these system variable errors were used to calculate the expanded uncertainty (U). For each system, the expanded uncertainties (k = 1, confidence level = 95%) and relative expanded uncertainty (expanded uncertainty/generated pressure) levels are summarized in Table 4. Within the uncertainty limits, our bilateral and key comparisons [CCM.P-K4 (10 Pa to 1 kPa)] are extensive and in good agreement with those of other nations (Fig. 8 and Table 5).

모드 유연도 및 정규화된 모드차를 이용한 모드형상 전개 (Use of Modal Flexibility and Normalized Modal Difference(NMD) for Mode Shape Expansion)

  • ;;이상호;김문겸
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.778-785
    • /
    • 2006
  • In this paper, two possible ways for mode shape expansion are proposed and opened for discussion for future use. The first method minimizes the modal flexibility error between the experimental and analytical mode shapes corresponding to the measured DOFs to find the multiplication matrix which can be treated as the least-squares minimization problem. In the second method, Normalized Modal Difference (NMD) is used to calculate multiplication matrix using the analytical DOFs corresponding to measured DOfs. This matrix is then used to expand the measured mode shape to unmeasured DOFs. A simulated simply supported beam is used to demonstrate the performance of the methods. These methods are then compared with two most promising existing methods namely Kidder dynamic expansion and Modal expansion methods. It is observed that the performance of the modal flexibility method is comparable with existing methods. NMD also have the potential to expand the mode shapes though it is seen more sensitive to the distribution of error between FEM and actual test data.

  • PDF

휠트래킹 시험을 통한 포켓형 지반공동 긴급복구 팽창재료의 거동특성 평가 (Evaluation on Behavior Characteristics of a Pocketable Expansion Material for Ground Cavity Based on Wheel Tracking Test Results)

  • 박정준;김주호;김기성;김동욱;홍기권
    • 한국지반신소재학회논문집
    • /
    • 제17권1호
    • /
    • pp.75-83
    • /
    • 2018
  • 본 연구에서는 지반 내 공동에 대하여 긴급복구가 필요한 경우를 대상으로 개발된 포켓형 팽창재료의 거동특성을 분석하고자, 휠트래킹 시험을 통한 동적안정도 및 일축압축강도시험을 이용한 강도특성을 평가하였다. 휠트래킹 시험 결과, 높은 하중조건에서 포켓형 팽창재료로 복구된 지반은 모래지반에 비하여 침하량 증가율이 감소하였다. 즉, 포켓형 팽창재료는 재료의 강성으로 침하억제효과를 나타내는 것으로 확인되었으며, 이는 동적안정도 평가결과에서도 동일하게 나타났다. 휠트래킹 시험 전 후의 일축압축강도시험 결과로부터 공동 긴급복구용 포켓형 팽창재료는 복구된 지반 상부의 하중지지역할이 충분히 가능한 것으로 평가되었다.

Eigenfunction expansion solution and finite element solution for orthotropic hollow cylinder under sinusoidal impact load

  • Wang, X.;Dai, H.L.
    • Structural Engineering and Mechanics
    • /
    • 제16권1호
    • /
    • pp.35-46
    • /
    • 2003
  • The histories and distributions of dynamic stresses in an orthotropic hollow cylinder under sinusoidal impact load are obtained by making use of eigenfunction expansion method in this paper. Dynamic equations for axially symmetric orthotropic problem are founded and results are carried out for a practical example in which an orthotropic hollow cylinder is in initially at rest and subjected to a dynamic interior pressure $p(t)=-{\sigma}_0(sin{\alpha}t+1)$. The features of the solution appear the propagation of the cylindrical waves. The other hand, a dynamic finite element solution for the same problem is also got by making use of structural software (ABAQUS) program. Comparing theoretical solution with finite element solution, it can be found that two kinds of results obtained by two different solving methods are suitably approached. Thus, it is further concluded that the method and computing process of the theoretical solution are effective and accurate.