• Title/Summary/Keyword: Dynamic equations

Search Result 2,267, Processing Time 0.023 seconds

Papers : Implicit Formulation of Rotor Aeromechanic Equations for Helicopter Flight Simulation (논문 : 헬리콥터 비행 시뮬레이션을 위한 로터운동방정식 유도)

  • Kim, Chang-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.8-16
    • /
    • 2002
  • The implicit formulation of rotor dynamics for helicopter flight simulation has been derived and and presented. The generalized vector kinematics regarding the relative motion between coordinates were expressed as a unified matrix operation and applied to get the inertial velocities and accelerations at arbitaty rotor blade span position. Based on these results the rotor aeromechanic equations for flapping dynamics, lead-lag dynamics and torque dynamics were formulated as an implicit form. Spatial integration methods of rotor dynamic equations along blade span and the expanded applicability of the present implicit formulations for arbitrary hings geometry and hinge sequences have been investigated. Time integration methods for present DAE(Differential Algebraic Equation) to calculate dynamic response calculation are recommenaded as future works.

Computation of Dynamic Damping Coefficients for Projectiles using Steady Motions (정상 운동을 이용한 발사체의 동적 감쇠계수 계산)

  • Park,Su-Hyeong;Gwon,Jang-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.19-26
    • /
    • 2003
  • A steady prediction method of dynamic stability derivatives is presented in the unified framework of the unsteady Euler equations. New approach does not require any modification of the governing equations except addition of non-inertial force terms. The present methods are applied to compute the pitch-damping coefficients using the lunar coning and the lunar helical motions in the Cartesian coordinate frame. The results for the ANSR and the Basic Finner are in good agreement with the PNS data, range data, and the results using the unsteady prediction method. The results show that the steady approach using the unified governing equations in the Cartesian coordinate frame can be successfully applied to predict the pitch-damping coefficients.

Numerical study on the resonance response of spar-type floating platform in 2-D surface wave

  • Choi, Eung-Young;Cho, Jin-Rae;Jeong, Weui-Bong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • This paper is concerned with the numerical study on the resonance response of a rigid spar-type floating platform in coupled heave and pitch motion. Spar-type floating platforms, widely used for supporting the offshore structures, offer an economic advantage but those exhibit the dynamically high sensitivity to external excitations due to their shape at the same time. Hence, the investigation of their dynamic responses, particularly at resonance, is prerequisite for the design of spar-type floating platforms which secure the dynamic stability. Spar-type floating platform in 2-D surface wave is assumed to be a rigid body having 2-DOFs, and its coupled dynamic equations are analytically derived using the geometric and kinematic relations. The motion-variance of the metacentric height and the moment of inertia of floating platform are taken into consideration, and the hydrodynamic interaction between the wave and platform motions is reflected into the hydrodynamic force and moment and the frequency-dependent added masses. The coupled nonlinear equations governing the heave and pitch motions are solved by the RK4 method, and the frequency responses are obtained by the digital Fourier transform. Through the numerical experiments to the wave frequency, the resonance responses and the coupling in resonance between heave and pitch motions are investigated in time and frequency domains.

OSCILLATORY BEHAVIOR AND COMPARISON FOR HIGHER ORDER NONLINEAR DYNAMIC EQUATIONS ON TIME SCALES

  • Sun, Taixiang;Yu, Weiyong;Xi, Hongjian
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.289-304
    • /
    • 2012
  • In this paper, we study asymptotic behaviour of solutions of the following higher order nonlinear dynamic equations $$S_n^{\Delta}(t,x)+{\delta}p(t)f(x(g(t)))=0$$ and $$S_n^{\Delta}(t,x)+{\delta}p(t)f(x(h(t)))=0$$ on an arbitrary time scale $\mathbb{T}$ with sup $\mathbb{T}={\infty}$, where n is a positive integer, ${\delta}=1$ or -1 and $$S_k(t,x)=\{\array x(t),\;if\;k=0,\\a_k(t)S_{{\kappa}-1}^{\Delta}(t),\;if\;1{\leq}k{\leq}n-1,\\a_n(t)[S_{{\kappa}-1}^{\Delta}(t)]^{\alpha},\;if\;k=n,$$ with ${\alpha}$ being a quotient of two odd positive integers and every $a_k$ ($1{\leq}k{\leq}n$) being positive rd-continuous function. We obtain some sufficient conditions for the equivalence of the oscillation of the above equations.

Study on the Damping Performance Characteristics Analysis of Shock Absorber of Vehicle by Considering Fluid Force

  • Lee Choon-Tae;Moon Byung-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.520-528
    • /
    • 2005
  • In this study, a new mathematical dynamic model of displacement sensitive shock absorber (DSSA) is proposed to predict the dynamic characteristics of automotive shock absorber. The performance of shock absorber is directly related to the vehicle behaviors and performance, both for handling and ride comfort. The proposed model of the DSSA has two modes of damping force (i.e. soft and hard) according to the position of piston. In this paper, the performance of the DSSA is analyzed by considering the transient zone for more exact dynamic characteristics. For the mathematical modeling of DSSA, flow continuity equations at the compression and rebound chamber are formulated. And the flow equations at the compression and rebound stroke are formulated, respectively. Also, the flow analysis at the reservoir chamber is carried out. Accordingly, the damping force of the shock absorber is determined by the forces acting on the both side of piston. The analytic result of damping force characteristics are compared with the experimental results to prove the effectiveness. Especially, the effects of displacement sensitive orifice area and the effects of displacement sensitive orifice length on the damping force are observed, respectively. The results reported herein will provide a better understanding of the shock absorber.

Dynamic Characteristics of Revolution Shells (회전쉘의 동적 특성에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.123-140
    • /
    • 2014
  • This paper proposes a simple and effective method for determining the dynamic characteristics of revolution shells. This is a weighted residual method in which the collocation points are taken at the roots of orthogonal polynomial. In this paper the collocation method is employed to replace a partical differential eqations by a system of ordinary differential equations in time, and the resulting equations are solved by two different numerical methods of time integration : an implicit method and an explicit method. The proposed approach is formulated in some detail. The versatility and accuracy are illustrated through several numerical examples. The method appears to be relatively easy to set up and gives satisfactory results.

Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.847-868
    • /
    • 2016
  • In this study, the free vibration analysis of axially moving beams is investigated according to Reddy-Bickford beam theory (RBT) by using dynamic stiffness method (DSM) and differential transform method (DTM). First of all, the governing differential equations of motion in free vibration are derived by using Hamilton's principle. The nondimensionalised multiplication factors for axial speed and axial tensile force are used to investigate their effects on natural frequencies. The natural frequencies are calculated by solving differential equations using analytical method (ANM). After the ANM solution, the governing equations of motion of axially moving Reddy-Bickford beams are solved by using DTM which is based on Finite Taylor Series. Besides DTM, DSM is used to obtain natural frequencies of moving Reddy-Bickford beams. DSM solution is performed via Wittrick-Williams algorithm. For different boundary conditions, the first three natural frequencies that calculated by using DTM and DSM are tabulated in tables and are compared with the results of ANM where a very good proximity is observed. The first three mode shapes and normalised bending moment diagrams are presented in figures.

Submarine Diving and Surfacing Simulation Using Discrete Event and Dynamic-based Discrete Time Combined Modeling Architecture (이산 사건 및 역학 기반 이산 시간 혼합형 모델링에 의한 잠수함의 잠항 부상 시뮬레이션)

  • Cha, Ju-Hwan;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.248-257
    • /
    • 2010
  • In this study, a discrete event and dynamic-based discrete time combined simulation modeling architecture, which can be used to calculate equations of motions among discrete events, is developed. This is composed of a command model, which is in charge of discrete event simulation, a numerical integration model, which finds motions by numerically integrating equations of motions, and an external force and control force model, which calculates the force and transmits it to the equations. Using this architecture, we can develop dynamic-based simulation by simply connecting and combining models, and handle simultaneously discrete event and discrete time simulation. To verify the efficiency of the architecture, it is applied to the submarine diving and surfacing simulation.

Oscillation of Second-Order Nonlinear Forced Functional Dynamic Equations with Damping Term on Time Scales

  • Agwa, Hassan Ahmed;Khodier, Ahmed Mahmoud;Ahmed, Heba Mostaafa Atteya
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.777-789
    • /
    • 2016
  • In this paper, we establish some new oscillation criteria for the second-order forced nonlinear functional dynamic equations with damping term $$(r(t)x^{\Delta}(t))^{\Delta}+q({\sigma}(t))x^{\Delta}(t)+p(t)f(x({\tau}(t)))=e(t)$$, and $$(r(t)x^{\Delta}(t))^{\Delta}+q(t)x^{\Delta}(t)+p(t)f(x({\sigma}(t)))=e(t)$$, on a time scale ${\mathbb{T}}$, where r(t), p(t) and q(t) are real-valued right-dense continuous (rd-continuous) functions [1] defined on ${\mathbb{T}}$ with p(t) < 0 and ${\tau}:{\mathbb{T}}{\rightarrow}{\mathbb{T}}$ is a strictly increasing differentiable function and ${\lim}_{t{\rightarrow}{\infty}}{\tau}(t)={\infty}$. No restriction is imposed on the forcing term e(t) to satisfy Kartsatos condition. Our results generalize and extend some pervious results [5, 8, 10, 11, 12] and can be applied to some oscillation problems that not discussed before. Finally, we give some examples to illustrate our main results.

The effect of in-plane deformations on the nonlinear dynamic response of laminated plates

  • Kazanci, Zafer;Turkmen, Halit S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.589-608
    • /
    • 2012
  • In this study, the effect of in-plane deformations on the dynamic behavior of laminated plates is investigated. For this purpose, the displacement-time and strain-time histories obtained from the large deflection analysis of laminated plates are compared for the cases with and without including in-plane deformations. For the first one, in-plane stiffness and inertia effects are considered when formulating the dynamic response of the laminated composite plate subjected to the blast loading. Then, the problem is solved without considering the in-plane deformations. The geometric nonlinearity effects are taken into account by using the von Karman large deflection theory of thin plates and transverse shear stresses are ignored for both cases. The equations of motion for the plate are derived by the use of the virtual work principle. Approximate solution functions are assumed for the space domain and substituted into the equations of motion. Then, the Galerkin method is used to obtain the nonlinear algebraic differential equations in the time domain. The effects of the magnitude of the blast load, the thickness of the plate and boundary conditions on the in-plane deformations are investigated.