• 제목/요약/키워드: Dynamic equations

검색결과 2,267건 처리시간 0.028초

천이 전달 방정식을 이용한 진동하는 익형의 동적 실속의 해석 (ANALYSIS ON THE DYNAMIC STALL OVER AN OSCILLATING AIRFOIL USING TRANSITION TRANSPORT EQUATIONS)

  • 전상언;사정환;박수형;변영환
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.80-86
    • /
    • 2014
  • Numerical investigation on the dynamic stall over an oscillating airfoil is presented. A Reynolds-Averaged Navier-Stokes (RANS) equations are coupled with transition transport equations for the natural transition. Computational results considering the turbulent transition are compared with the fully turbulent computations and the experimental data. Results with transition prediction show closer correlation with the experimental data than those with the fully turbulent assumption, especially in the reattachment region.

OSCILLATION BEHAVIOR OF SOLUTIONS OF THIRD-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS ON TIME SCALES

  • Han, Zhenlai;Li, Tongxing;Sun, Shurong;Zhang, Meng
    • 대한수학회논문집
    • /
    • 제26권3호
    • /
    • pp.499-513
    • /
    • 2011
  • By using the Riccati transformation technique, we study the oscillation and asymptotic behavior for the third-order nonlinear delay dynamic equations $(c(t)(p(t)x^{\Delta}(t))^{\Delta})^{\Delta}+q(t)f(x({\tau}(t)))=0$ on a time scale T, where c(t), p(t) and q(t) are real-valued positive rd-continuous functions defined on $\mathbb{T}$. We establish some new sufficient conditions which ensure that every solution oscillates or converges to zero. Our oscillation results are essentially new. Some examples are considered to illustrate the main results.

COMMON FIXED POINT THEOREMS FOR CONTRACTIVE TYPE MAPPINGS AND THEIR APPLICATIONS IN DYNAMIC PROGRAMMING

  • Liu, Zeqing;Wang, Lili;Kim, Hyeong-Kug;Kang, Shin-Min
    • 대한수학회보
    • /
    • 제45권3호
    • /
    • pp.573-585
    • /
    • 2008
  • A few sufficient conditions for the existence and uniqueness of fixed point and common fixed point for certain contractive type mappings in complete metric spaces are provided. Several existence and uniqueness results of solution and common solution for some functional equations and system of functional equations in dynamic programming are discussed by using the fixed point and common fixed point theorems presented in this paper.

Modal Analysis of Constrained Multibody Systems Undergoing Constant Accelerated Motions

  • Park, Dong-Hwan;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1086-1093
    • /
    • 2004
  • The modal characteristics of constrained multibody systems undergoing constant accelerated motions are investigated in this paper. Relative coordinates are employed to derive the equations of motion, which are generally nonlinear in terms of the coordinates. The dynamic equilibrium position of a constrained multibody system needs to be obtained from the nonlinear equations of motion, which are then linearized at the dynamic equilibrium position. The mass and the stiffness matrices for the modal analysis can be obtained from the linearized equations of motion. To verify the effectiveness and the accuracy of the proposed method, two numerical examples are solved and the results obtained by using the proposed method are compared with those obtained by analytical and other numerical methods. The proposed method is found to be accurate as well as effective in predicting the modal characteristics of constrained multibody systems undergoing constant accelerated motions.

STABILITY BY KRASNOSELSKII'S FIXED POINT THEOREM FOR NONLINEAR FRACTIONAL DYNAMIC EQUATIONS ON A TIME SCALE

  • Belaid, Malik;Ardjouni, Abdelouaheb;Boulares, Hamid;Djoudi, Ahcene
    • 호남수학학술지
    • /
    • 제41권1호
    • /
    • pp.51-65
    • /
    • 2019
  • In this paper, we give sufficient conditions to guarantee the asymptotic stability of the zero solution to a kind of nonlinear fractional dynamic equations of order ${\alpha}$ (1 < ${\alpha}$ < 2). By using the Krasnoselskii's fixed point theorem in a weighted Banach space, we establish new results on the asymptotic stability of the zero solution provided f (t, 0) = 0, which include and improve some related results in the literature.

Theoretical formulation for vehicle-bridge interaction analysis based on perturbation method

  • Tan, Yongchao;Cao, Liang;Li, Jiang
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.191-204
    • /
    • 2022
  • A three-mass vehicle model including one rigid mass and two unsprung masses is adopted to predict the vehicle-bridge interaction (VBI) and to establish the nonlinear coupled governing equations. To overcome the numerical instability and large computation problems concerning the vehicle-bridge system, the perturbation method is used to convert the nonlinear coupled governing equations into a set of linear uncoupled equations. Formulas for bridge's natural frequencies considering both the VBI and the dynamic responses of bridge and vehicle are proposed. Compared with the numerical results obtained by the Newmark-β method, the theoretical solutions for natural frequencies and dynamic responses are validated. The effects of the important factors of unsprung mass, vehicle damping, surface irregularity on the natural frequencies and dynamic responses of bridge and vehicle are discussed, based on the theoretical solutions.

로봇 운동방정식과 감도해석 (Dynamic Equations of Robots and Sensitivity Analysis)

  • 송성재;이장무
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.105-111
    • /
    • 1995
  • The inverse dynamic equations for 5 link robot including a closed chain have been derived. The closed chain is virtually cut open, and the kinematics and dynamics of the virtual open chain robot are analyzed. The constraints are applied to the virtually cut joints by the Jacobian matrix which represents the configuration of the closed chain. The topology of tree structrued open chain robot is described by a FATHER array. The FATHER array of a link indicates the link tha tis connected in the direction of base link. Based on the inverse dynamic equations, the torque sensitivity models of the 5 link robot have been developed. The sensitivity models characterize the sensitivity of the driving torque with respect to the link parameters. All the procedures are illustrated through the 2 link robot.

  • PDF

An Analysis of Dynamic Behavior of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motor

  • Song, Young-Han;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.18-26
    • /
    • 2003
  • Recently, fluid dynamic bearings (EDBs) have important applications in miniature rotating machines such as those found in the computer information storage industry, due to their outstanding low acoustic noise and NRRO (Non-Repeatable Run Out) characteristics. This research investigates the dynamic behavior of fluid dynamic bearings composed of hydrodynamic herringbone groove journal and spiral groove thrust bearing. The five degrees of freedom of FDB are considered to describe the real motion of a general rotor bearing system. The Reynolds equation and five nonlinear equations of motion for the dynamic behavior are solved simultaneously, The incompressible Reynolds equation is solved by using the finite element method (FEM) in order to calculate the pressure distribution in a fluid film and the five equations of motion by using the Runge-Kutta method. The reaction forces and moments are obtained by integrating the pressure along the fluid film. Numerical results are validated by comparing with the previously published experimental and numerical results. As a result the dynamic behavior of FDB spindle such as orbit, floating height, and angular orbit is investigated by considering the conical motion under the static and dynamic load conditions.

두 탑 PSA공정의 상세 동적모사 및 초기운전조건 결정 (Rigorous dynamic simulation and determination of initial operating conditions for two-bed PSA processes)

  • 황덕재;문일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1520-1523
    • /
    • 1997
  • A rigorous dynamic simulation was performed in binary gas mixture H$_{2}$/CO (70:30 vol.%) to determinate start-up operating conditions of PSA(Pressure Swing Adsorption) processes. The rigorous dynamic model for the PSA process contains an Ergun equation for expressing the pressure drop in a bed, and valve equations to compute the boundary pressure change of the bed. As the result of the continuous dynamic simulation of 100 operating cyles in various initial conditions, the unsteady-state appeared in the early period and the cyclic steady-state came out about 20th cycle in feed condition and vaccum condition, and 30th cycle in pure H$_{2}$ condition. As time goes by valve equations made change the pressure at each end of the bed in ressurization, countercurrunt-depressurization and pressure equalization steps. The H$_{2}$ purity and the recovery is 99.99% and 86.73% respectively, which is slightly higher than the experimental data. Main contributiion of this study includes supplying fundamental technologies of handling combined variables PSA processes by developing rigorous models.

  • PDF

Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory

  • Amoli, Abolfazl;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, nonlinear dynamic response of a concrete plate retrofit with Aluminium oxide ($Al_2O_3$) under seismic load and magnetic field is investigated. The plate is a composite reinforced by Aluminium oxide with characteristics of the equivalent composite being determined using Mori-Tanka model considering agglomeration effect. The plate is simulated with higher order shear deformation plate model. Employing nonlinear strains-displacements, stress-strain, the energy equations of column was obtained and using Hamilton's principal, the governing equations were derived. Differential quadrature method (DQM) in conjunction with Newark method is applied for obtaining the dynamic response of structure. The influences of magnetic field, volume percent of nanoparticles, geometrical parameters of column, agglomeration and boundary conditions on the dynamic response were investigated. Results showed that with increasing volume percent of nanoparticles, the dynamic deflection decreases.