• Title/Summary/Keyword: Dynamic equations

Search Result 2,267, Processing Time 0.026 seconds

Effects of elastic foundation on the dynamic stability of cylindrical shells

  • Ng, T.Y.;Lam, K.Y.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.193-205
    • /
    • 1999
  • A formulation for the dynamic stability analysis of cylindrical shells resting on elastic foundations is presented. In this previously not studied problem, a normal-mode expansion of the partial differential equations of motion, which includes the effects of the foundation as well as a harmonic axial loading, yields a system of Mathieu-Hill equations the stability of which is analyzed using Bolotin's method. The present study examines the effects of the elastic foundation on the instability regions of the cylindrical shell for the transverse, longitudinal and circumferential modes.

Simulation of Dynamic Characteristics of Agricultural Tractor(I) - Development of 3 Dimensional Dynamic Tractor-Trailer Model - (농용 트랙터의 동특성 시뮬레이션(I) - 3차원 동적 트랙터 -트레일러 모델 개발 -)

  • 박홍제;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.421-432
    • /
    • 1997
  • This study was conducted to investigate dynamic characteristics of agricultural tractor with a particular interest in ride vibrations when it is subjected to various excitation forces. As the first part of it this paper describes development of dynamic model of a tractor-trailer system and its equations of motions. An 3 dimensional 16-degree-of-freedom dynamic model for a tractor-trailer system was developed and its equations of motions were derived, which will be used to investigate the effects of irregular ground surface and excitation forces due to the engine mounted on the tractor. And the excitation forces were also formulated analytically. The transition matrix method and QR algorithm were proposed for numerical solution of the equation of motions fur the developed model. The later parts of the study will include a proof of the model and optimization from which tractors can be designed to minimize the ride vibrations. This will be presented in the second and third papers to be followed shortly.

  • PDF

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

Dynamic Analysis of an Automatic Ball Balancer with Triple Races (삼중레이스를 갖는 자동평형장치의 동적 해석)

  • Jwa, Seong-Hun;Jo, Eun-Hyeong;Son, Jin-Seung;Park, Jun-Min;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.764-774
    • /
    • 2002
  • Dynamic behaviors are analyzed for an automatic ball balancer (ABB) with triple races, which is a device to reduce the unbalanced mass of optical disk drives (ODD) such as CD-ROM or DVD drives. The nonlinear equations of motion are derived by using Lagrange's equations with the polar coordinate system. It is shown that the polar coordinate system provides the complete stability analysis while the rectangular coordinate system used in other previous studies has limitations on the stability analysis. For the stability analysis, the equilibrium positions and the linearized perturbation equations are obtained by the perturbation method. Based on the linearized equations, the stability of the system is analyzed around the equilibrium positions; furthermore, to confirm the stability, the time responses for the nonlinear equations of motion are computed by using a time integration method and experimental analyses are performed. Theoretical and experimental results show a superiority of the ABB with triple races.

The G. D. Q. method for the harmonic dynamic analysis of rotational shell structural elements

  • Viola, Erasmo;Artioli, Edoardo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.789-817
    • /
    • 2004
  • This paper deals with the modal analysis of rotational shell structures by means of the numerical solution technique known as the Generalized Differential Quadrature (G. D. Q.) method. The treatment is conducted within the Reissner first order shear deformation theory (F. S. D. T.) for linearly elastic isotropic shells. Starting from a non-linear formulation, the compatibility equations via Principle of Virtual Works are obtained, for the general shell structure, given the internal equilibrium equations in terms of stress resultants and couples. These equations are subsequently linearized and specialized for the rotational geometry, expanding all problem variables in a partial Fourier series, with respect to the longitudinal coordinate. The procedure leads to the fundamental system of dynamic equilibrium equations in terms of the reference surface kinematic harmonic components. Finally, a one-dimensional problem, by means of a set of five ordinary differential equations, in which the only spatial coordinate appearing is the one along meridians, is obtained. This can be conveniently solved using an appropriate G. D. Q. method in meridional direction, yielding accurate results with an extremely low computational cost and not using the so-called "delta-point" technique.

Development of Curve Fitted Equation about Dynamic Response Analysis of a Buried Concrete Pipelines (콘크리트 매설관의 동적응답해석에 대한 곡선적합식의 개발)

  • Jeong Jin-Ho;Kim Sung-Ban;Ahn Myung-Seok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.9-19
    • /
    • 2006
  • The objective of this study is to propose curve fitted equations that can facilitate calculations and improve a practical applicability when the seismic performance of buried pipelines needs to be evaluated. The curve fitted equations are derived based on the evaluation of the dynamic responses of concrete pipe with a boundary condition of fixed-free ends. To study the dynamic response of underground pipe, the numerical analysis program developed in the previous research has been used. The location of maximum strain has been determined through dynamic analyses for a boundary condition of fixed-free ends. Then $wavelength{\lambda}$ of 5-1000(m) and propagation velocity(Vs) of 100-2000(m/s) have been applied at the location of maximum strain and the unit srain curve with the changes of the $wavelength{\lambda}$ and propagation velocity(Vs) has been obtaind. Non-linear least-square regression has been used to develop highly applicable curve fitted equations and various types of exponential regression equations have been checked out. Thus curve fitted equations and necessary coefficients with best results are suggested.

Comparison of Correlation Equations between N value and Shear Wave Velocity (N값과 전단파 속도의 상관식 비교)

  • Kong, Jin-Young;Chae, Hwi-Young;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.656-665
    • /
    • 2010
  • Shear modulus has been recognized as one of the important soil properties in dynamic analysis of ground and can be calculated from in situ measurement of shear wave velocity. Field seismic tests are the most accurate but expensive methods to investigate dynamic ground characteristics. Due to that reason, empirical equations for estimating the shear wave velocity are widely used rather than conducting in-situ tests. The most common equations are based on the N value obtained in conjuctions with a standard penetration test. In this paper, the field datas of standard penetration test and suspension PS logging measured in 126 sites of Korea were summarized and the correlation equations between N value and shear wave velocity are suggested.

  • PDF

Dynamic Characteristics of Composite Plates Subjected to Electromagnetic Field (자기장을 받는 복합재료 판의 동적 특성 연구)

  • Kim, Sung-Kyun;Lee, Kune-Woo;Moon, Jei-Kwon;Choi, Jong-Woon;Kim, Young-Jun;Park, Sang-Yun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.681-688
    • /
    • 2011
  • Structural model of laminated composite plates based on the first order shear deformable plate theory and subjected to a combination of magnetic and thermal fields is developed. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. In order to obtain the implications of a number of geometrical and physical features of the model, one special case is investigated, that is, free vibration of a composite plate immersed in a transversal magnetic field. Special coupling effects between the magnetic and elastic fields are revealed in this paper.

  • PDF

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

Dynamic Modeling and Analysis of the Washing Machine System with an Automatic Balancer (자동 밸런서를 갖는 세탁기 시스템의 동력학 모델링 및 해석)

  • Oh, Hyuck-Jin;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1212-1220
    • /
    • 2004
  • The structural unbalance mass and laundry are the important sources of the severe vibrations of automatic washing machines. In this paper, a mathematical model is developed for the dynamic analysis of the vertical axis automatic washing machines of pulsator-type. In the model, the rigid body motion of tub assembly is represented by six degrees of freedom and the dynamics of automatic hydraulic balancer is represented by one degree of freedom. The fundamental elastic modes of the tub shell and four suspension bars are also taken into account in the mathematical model, based on analytical and experimental modal analysis results. The 12 degrees of freedom equations of motion are derived by using the Lagrange's equations and the present dynamic model is evaluated by comparing the numerical simulation results with experimentally measured data.