• Title/Summary/Keyword: Dynamic damping coefficients

Search Result 197, Processing Time 0.025 seconds

Estimation of Aircraft Stability Derivatives Using a Subsonic-supersonic Panel Method (아음속 초음속 패널법을 이용한 항공기 안정성 미계수 예측)

  • Gong, Hyo-Joon;Lee, Hyung-Ro;Kim, Beom-Soo;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.385-394
    • /
    • 2012
  • A computer program that can estimate static, dynamic stability and control derivatives using a subsonic-supersonic panel method is developed. The panel method uses subsonic-supersonic source and elementary horse shoe vortex distributions, and their strengths are determined by solving the boundary condition approximated with a thin body assumption. In addition, quasi-steady analysis on the body fixed coordinate system allows the estimation of damping coefficients of aircraft 3 axes. The code is validated by comparing the neutral point, roll and pitch damping of delta wings with published analysis results. Finally, the static, dynamic stability and control derivatives of F-18 are compared with experimental data as well as other numerical results to show the accuracy and the usefulness of the code.

An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape (그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석)

  • 신동우;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.162-169
    • /
    • 1999
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, groove angle.

  • PDF

A lateral vibration damper using leaf springs (겹판스프링을 이용한 횡방향 진동절연댐퍼)

  • Je, Yang-Gyu;Kim, Jong-Su;Jeong, Si-Yeong;Hong, Seong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.843-858
    • /
    • 1998
  • This paper intoduces a new lateral damper, which is simply called "leaf spring damper(LSD)", using the leaf springs. The principle and the contruction of this novel damper is described in detail. The theoretical analysis of the damper is presented. The advantages of this novel damper are discussed. Experiments are performed on four dampers which have the different stiffness and damping coeficients respectively. The dynamic coefficients of the dampers and the temperature rise of working fluid are measured as the vibration speeds. The experimental results are compared with the theoretical results and it is found a good agreement.agreement.

An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape (그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석)

  • 신동우;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.425-431
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, and groove angle.

Stability Analysis of Turbocharger Rotor-Bearing System (과급기 축계의 안정성 해석)

  • Suk, Ho-Il;Song, Jin-Dea;Kim, Yong-Han;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1038-1043
    • /
    • 2002
  • The floating ring journal bearing is attraction for high-speed turbo machinery applications, including turbochargers and aircraft accessory equipment, because it is not only simple and easy to make and to replace in the field but also it seems to have adequate high speed stability characteristics. Therefore, an analysis method of dynamic properties of floating ring journal bearing is presented. The static equilibrium locus of inner film and outer film are calculated by using the impedance description. The equivalent stiffness and damping coefficients of floating ring journal bearing are composed by using the equilibrium of torque between inner film and outer film. Then, a stability analysis of turbocharger shaft system supported with floating ring journal bearing has been performed.

  • PDF

An Engine Structure-Borne Noise Analysis by Finite Element Method (유한요소법에 의한엔진 구조소음 해석)

  • 안상호;김주연;김규철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.122-133
    • /
    • 1998
  • This paper presents the static analysis, the modal analysis and the forced vibration analysis on engine structures to find out the structure-borne noise sources by finite element method. The deformation of engine structures under the maximum combu- stion gas force was calculated through the static analysis, and the resonance possibilities were predicted by the modal analysis which ascertains mode shapes and the corresponding frequencies of engine global and its major noise sources in engine surfaces were investigated with the forced vibration analysis by means of finding the transfer mobilities on engine surfaces due to the piston impact and the velocity levels due to the combustion in consideration of oil film stiffness and damping coefficients. Finally, the direction of engine structure-borne noise reduction can be estabilished by the above-mentioned analysis procedure and the reduction effect of cost on proto-type engine build-up is expected.

  • PDF

Identification of Parameter for Bearing Using Orbit Shapes (궤도형상 데이터를 이용한 베어링 파라미터 규명)

  • 이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.672-675
    • /
    • 1997
  • This paper presents the identification of rotor dynamic parameters. The solution of the system equation can be obtained using least square method. The sensitivity analysis is performed to extract optimized solution, which is considered to be insensitive to inherent measurement errors. The cosine and sine term of orbit shapes can be obtained by experiment the orbit analysis at a different speed after doing orbit analysis at an arbitrary selected speed. This values measured time domain used to search the stiffness and damping coefficients of rotor bearing.

  • PDF

Vibration Analysis of Rotor System for Rotary Compressor (로터리 컴프레서의 축계 진동해석)

  • 정의봉;김태학;이현욱;박영도
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.260-265
    • /
    • 1997
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric rotation parts and gas forces induced by the difference in pressure between compression and suction gases6 Rotor-journal bearing system is nonlinear since the stiffness and damping coefficients of the lubricating oil film are not constant in the bearings. In this paper, the program for predicting the behaviors of rotor-journal bearing system of rotary compressor is developed. Finite element modeling is used to analyze the flexible rotor. The numerical results are compared with experimental results. The location of balancer weight are suggested for reducing rotor whiring displacement.

  • PDF

Rotordynamic Design of the Micro Gas Turbine Supported by Air Foil Bearings (공기포일베어링에 지지된 마이크로가스터빈의 회전체동역학적 설계)

  • Kim, Young-Cheol;Han, Jung-Wan;Kim, Kyung-Woong;Kim, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.662-667
    • /
    • 2003
  • This paper presents a performance analysis of the 1st generation bump foil journal bearings for the micro gas turbine TG75. Static performances such as load capacity and attitude angle are estimated by using soft elasto-hydrodynamic analysis technique, and dynamic performances such as stiffness and damping coefficients are estimated by perturbation method. Rotordynamic analysis for TG75 is performed by using the bearing analysis results. TG75 rotor has 2 horizontal and vertical directional natural modes due to the bearing stiffness characteristics. TG75 rotor will be stably operated between the 1st bending mode at 33000cpm and the 2nd bending mode at 85500cpm. Unbalance response analysis results satisfy the API vibration criteria.

  • PDF

Identification of parameter for Bearing Using Orbit Data (궤도형상 데이터를 이용한 베어링 파라미터 규명)

  • 이경백;정찬범;김영배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.112-119
    • /
    • 2003
  • This paper presents the identification of rotor dynamic parameters. The solution of the system equation can be obtained using least square method. The sensitivity analysis is performed to extract optimized solution, which is considered to be insensitive to inherent measurement errors. The cosine and sine term of orbit shapes can be obtain ed through the by experiment of the orbit analysis at a different speed after doing orbit analysis at an arbitrary selected speed. This values measured time domain are used to search the stiffness and damping coefficients of rotor bearing.