• Title/Summary/Keyword: Dynamic characteristics of rotor

Search Result 324, Processing Time 0.028 seconds

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

Labyrinth Seal Design Considering Leakage Flow Rate and Rotordynamic Performance (누설유량과 회전체동역학적 성능을 고려한 래버린스 씰 설계)

  • Minju Moon;Jeongin Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.61-71
    • /
    • 2023
  • This study proposes a procedure for designing a labyrinth seal that meets both leakage flow rate and rotordynamic performance criteria (effective damping, amplification factor, separation margin, logarithmic decrement, and vibration amplitude). The seal is modeled using a one control volume (1CV) bulk flow approach to predict the leakage flow rate and rotordynamic coefficients. The rotating shaft is modeled with the finite element (FE) method and is assumed to be supported by two linearized bearings. Geometry, material and operating conditions of the rotating shaft, and the supporting characteristics of the bearings were fixed. A single labyrinth seal is placed at the center of the rotor, and the linearized dynamic coefficients predicted by the seal numerical model are inserted as linear springs and dampers at the seal position. Seal designs that satisfy both leakage and rotordynamic performance are searched by modifying five seal design parameters using the multi-grid method. The five design parameters include pre-swirl ratio, number of teeth, tooth pitch, tooth height and tooth tip width. In total, 12500 seal models are examined and the optimal seal design is selected. Finally, normalization was performed to select the optimal labyrinth seal designs that satisfy the system performance requirements.

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

Speed Field orient control of permanent magnet linear motor according to determination of system rate. (직선형 영구 자석 동기 모터의 시스템 정격 선정에 따른 속도 제어 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Jang, Won-Bum;Yang, Moon-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1273-1275
    • /
    • 2005
  • This paper presents design of speed control system for slot less iron-cored PM linear synchronous motor using space vector PWM. the design must be considered by the useable limits of the DC link voltage and dynamic operating rage as well as the characteristics of design parameters in a point of system. Therefore, in this paper, the permissible operating range of manufactured motor by determination of rate speed and rate thrust according to switching scheme of DC link voltage are offered. The vector control requires information about rotor position. And we can need to the Hall sensor for sampling current. In order to agree with this purpose, Digital Signal Processor(TMS320F240x) developed for implementation of a speed Field Oriented Control.

  • PDF

Experiment and Analysis of Piecewise-Linear Vibration systems (편적 선형 진동계의 실험과 해석)

  • Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.461-467
    • /
    • 2000
  • Mechanical problems are basically three dimensional nonlinear dynamic problems, which makes it difficult to solve. The difficulties are tried to overcome by modeling, i.e., simplifications of the system with the assumptions or negligence of minute effects. However, the correctness or usefulness of the model should be verified through the comparison with experimental results, which is the process of physical understanding of the system. The understanding of physics of the system make it possible to design or operation of the system. The effects of clearance and friction are always difficult problems in mechanical system due to its nonlinearity. The nonlinearity comes from piecewise-linear characteristics of the stiffness and damping of the system. The modeling of piecewise-linearity and the experimental result are discussed in this paper for impact and friction oscillator and rotor rubbing problem, which is the combination of impact and friction problems.

  • PDF

An Experimental Study on the Squeal Noise Generated in Friction Surface of Disk Brake (디스크 브레이크의 마찰면에서 발생되는 스퀼소음에 관한 실험적 연구)

  • 이해철;이원평;차경옥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.26-31
    • /
    • 2000
  • There are various noises generated by friction. Among the rest, eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. The parameters affecting brake squeal noise are the material properties of the braking pad, the dynamic properties of the brake parts and the dimensions of the brake assembly etc. Also, the squeal noise changes its inherent form with the normal load and sliding speed. In this study, the characteristics of brake squeal noise generated by friction is analyzed experimentally. The experiment focused on the analysis of friction self-excited vibration and squeal noise level. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding speeds. And Friction self-excited vibration is raised the brake squeal noise.

  • PDF

A Study on the Dynamic Characteristics of a Shaft with Initial Deflection (초기변형을 갖고 있는 회전축의 동특성에 관한 연구)

  • Kim, Y.C.;Kim, B.K.;Kim, B.O.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.80-87
    • /
    • 1998
  • In this study, the effects of residual shaft bow and flexible bearings of a single disk rotor are investigated. The stiffness coefficients of a shaft with initial deflection are different from those of a straight shaft. The stiffness coefficients are calculated using Castigliano theorem considering initial deflections. The stiffness coefficients, which are obtained in this study, are in good agreement with FEM results. The speed which causes zero amplitude is shown to be the square root of the ratio of residual bow amplitude to unbalance eccentricity in the case of rigid bearings and isotropic flexible bearings, but not in anisotropic bearings.

  • PDF

The Modelling and Characteristic Analysis of Brushless Synchronous Motor with Sinusoidal back EMF (정현파 역기전력 특성을 갖는 브러시리스 동기전동기의 모델링 및 특성해석)

  • Kim, Il-Nam;Baek, Su-Hyeon;Kim, Cheol-Jin;Maeng, In-Jae;Yun, Sin-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.380-386
    • /
    • 2000
  • This paper presents the mathematical modelling analysis of Brushless Synchronous Motor(BLSM). The dynamic and the steady state characteristics of BLSM are simulated and analyzed : electromagnetic torque, speed, line voltage, and current. We used mathematical modelling to model of BLSM with sinusoidal back EMF, namely the shaft transformation referencing rotor frame from a, b, c three to produce constant torque like synchronous motor. The experiment result has already similar to compare with simulation result : torque error about 7%, speed error about 5%. The validity of proposed modelling and analysis was confirmed by the experimental result.

  • PDF

A Study on the Squeal Noise generated by Self-excited Vibration in Friction surface (마찰면에서 자여 진동에 의해 발생되는 스퀼 소음에 관한 연구)

  • 이해철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.90-96
    • /
    • 1998
  • There are various noises generated by friction. Among the rest, eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. The parameters affecting brake squeal noise are the material properties of the braking pad, the dynamic properties of the brake parts and the dimensions of the brake assemble etc. Also, the squeal noise changes its inherent form(i.e. its sound pressure level and its frequency) with the normal load and sliding speed. In this study, the characteristics of brake squeal noise generated by friction is analyzed experimentally. The experiment focused on the analysis of friction self-excited vibrationand squeal noise level. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding speeds. And Friction self-excited vibration is raised the brake squeal noise.

  • PDF

BLDC Motor Cogging Torque Calculation with the Moving Material Method in the Finite Element Method

  • Won, Sung-Hong;Choi, Jae-Hoon;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.74-78
    • /
    • 2008
  • Conventionally, when we need to know about the dynamic characteristics of motors, the moving band method has been the first considerable technique. In this paper, we have investigated the moving material method that moves the property of the material in moving area elements of BLDC motors, instead of moving mesh elements of the rotor. From this method, we can reduce the demanded HDD memory for FEM analysis and the calculation time with same results.